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SLT Is about high confidence

Why SLT

Overview

Notation

First generation

Second generation s

Next generation

NeurlPS 2018

For a fixed algorithm, function class and sample size,
generating random samples» distribution of test errors

Focusing on the mean of the error distribution?
> can be misleading: learner only hasesample

Statistical Learning Theorytail of the distribution
> finding bounds which hold with high probability
over random samples of sine

Compare to a statistical test —32% confidence level
> chances of the conclusion not being true are less 18an

PAC: probably approximately correct
Use a ‘confidence parameté:’ P™M[large error]< 6
d 1S probability of being misled by the training set

Hencehigh confidenceP™[approximately correct: 1 -6
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Error distribution picture
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Overview
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The Plan

« Definitions and Notation: (John)

> rIsk measures, generalization
« First generation SLT: (Omar)

> Worst-case uniform bounds

> Vapnik-Chervonenkis characterization
= Second generation SLT: (John)

> hypothesis-dependent complexity

> SRM, Margin, PAC-Bayes framework
= Next generation SLT? (Omar)

> Stability. Deep NN’s. Future directions
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What to expect

We will...

> Focus on aimg methodgd key ideas
> Qutline some proofs
> Hitchhiker’s guide!

We will not...

> Detalled proofg full literature (apologies!)
> Complete history other learning paradigms
> Encyclopaedic coverage of SLT
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Definitions and Notation
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Mathematical formalization

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

| Learning algorithm A : 2™ — 3 |

o Z=XXY e XH = hypothesis class
X = set of inputs = set ofpredictors
Y = set of labels (e.g. classifiers)

Training sef(akasamplg: Sy, = ((X1, Y1), ..., (Xm, Ym))
a finite sequence ofput-label examples

SLT assumptions

e A data-generating distributidhoverZ.
e Learner doesn’t know, only sees the training set.
e The training seexamples arei.d. fromP: S, ~P™

> these can be relaxed (but beyond the scope of this tutorial)
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What to achieve from the sample?

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

Use the available sample to:

(1) learn a predictor
(2) certify the predictor’s performance

Learning a predictor:

e algorithm driven by some learning principle
e Informed by prior knowledge resulting in inductive bias

Certifying performance:

e what happens beyond the training set
e (generalization bounds

Actually |these two goals interafct with each other!
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Risk (aka error) measures

Why SLT A loss functionf(h(X), Y) Is used to measure the discrepancy
— . between a predicted lable(X) and the true labeY.

Notation

First generation o .
Second generation Emplrlcal rISk Rln(h) — I"_]r-l 2:21 g(h(xl)a YI)
Next generation (In'SampIe)

Theoretical risk:  Ryu(h) = E[£(h(X), Y)]
(out-of-sample)

Examples:

o {(h(X),Y) = 1h(X) # Y] : 0-1 loss(classification)

o ((h(X),Y) = (Y = h(X))? : square los¢regression)

o {(h(X),Y)=(1-Yh(X)), : hinge loss

o {(h(X),Y)=—-log(h(X)) : log loss(density estimation)
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Generalization

Why SLT If classifierh does well on the in-samplg, Y) pairs...

Overview

...will it still do well on out-of-sample pairs?

Notation

First generation

Second generation Generalization gap: A(h) = Rou(h) — Ra(h)

Next generation

Upper bounds: w.h.p. [A(h) < e(m,5)]
> ([ Rou(h) < Rn(h) + €(m, 0)]

Lower bounds: w.h.p. [A(h) > &m,0)]

Flavours:
m distribution-free m distribution-dependent
m algorithm-free m algorithm-dependent
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First generation SLT
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Building block: One single function

Why SLT For one fixed (non data-dependeint)

Overview

Notation E[Rm(h)] = E[% Z,”:‘l f(h(x|), Y|)] — I:\)out(h)

First generation

Second generation -«

Next generation

v

PMA(h) > €] = PME[Rn(h)] — Rn(h) > €] deviation ineq.
£(h(X),Y;) are independent r.v.'s
If 0 < £(h(X),Y) < 1, usingHoeffding’s inequality

PMA(h) > €] < exp{—2mez} =0

vy

» Giveno € (0,1), equate RHS t@, solve equation fog, get
P A(h) > +/(1/2m)log(1/5)| < 6

» with probability> 1 -6, [Rout(h) < Rn(h) + \/ Iog ]
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Finite function class

Why SLT . Algorithm A : 2™ — K Function classH with |H] < co

Overview

Notator . Aim for a uniform bound: P™[Vf e K, A(f)<e]>1-6

First generation :
Second generation Basic tool: [ P™"EjorEsor ---) < PYE;) + P(Ey) + - - - ]
s —: o known as theinion boundakacountable sub-additivily

P 3f € H, A(T) > €| < Dresc PTA(F) > €
< || exp{—2mez} )

w.p.>1-3, [VhefH Rou(h) < Ra(h) + /4 log ( %)]

NeurlPS 2018 9 Slide 16/52



Uncountably infinite function class?

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

Algorithm A : ZM — K Function classH with |H]| > |N]

Double sample tricka second ‘ghost sample’

m true error— empirical error on the ‘ghost sample’
m hence reduce to a finite number of behaviours
= make union bound, but bad events grouped together

Symmetrization

= bound the probability of good performance on one sampl
but bad performance on the other sample
m swapping examples between actual and ghost sample

Growth functionof classH:

m Gy (m) = largest number of dichotomies1 labels)
generated by the clag$ on anym points.

VC dimensionof classH:

m VC(H) = largestm such thatG;(m) = 2™
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VC upper bound

Why SLT Vapnik & Chervonenkis For anym, for any¢ € (0, 1),

Overview

wp.x1-4 [Vh e H, A(h) < \/g log( 22

0
First generation

Second generation -«

growth function

Next generation

= Bounding the growth functior» Sauer’s Lemma

= If d = VC(%) finite, thenGyc(m) < Ty, (¥) forallm

impliesGs:(m) < (em/d)? (polynomial inm)

For H with d = VC(K) finite, for anym, for any¢ € (0, 1),

w.p.>1-94, [Vh e H, A(h) < \/8—rﬁ' log(£?) + %Iog(%)]
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PAC learnabillity

— VC upper bound:

Overview :

oo : = Note that the bound is:

rstgeneraton - the same for all functions in the classfform overJ)
Second generation_ and the same for all distributionsr{iform overp)

Next generation

VC lower bound:

m VC dimensioncharacterises learnability in PAC setting:
there exist distributionsuch that with large probability
overmrandom examples, the gap between the risk and tf
best possible risk achievable over the class is at least

d

m’
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Limitations of the VC framework

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

The theory is certainly valid and tight — lower and upper
bounds match!

VC bounds motivate Empirical Risk Minimization (ERM),
as apply to a hypothesis space, not hypothesis-depender

Practical algorithms often do not search a fixed hypothes
space but regularise to trade complexity with empirical
error, e.gk-NN or SVMs or DNNs

Mismatchbetween theory and practice

Let’s illustrate this with SVMSs...
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NeurlPS 2018
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SVM with Gaussian kernel: A case study

Why SLT

VC dimension— infinite

but observed performance is often excellent

VC bounds aren’t able to explain this

lower bounds appear to contradict the observations
How to resolve this apparent contradiction?

Overview

Notation

First generation

Second generation -«

Next generation

Coming up...

m large margins distribution may not be worst-case
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Hitchhiker’s guide

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

[right but wrong

\

[ nice and complet

| Practical usefulnegs— ’

[ Theory}——

/

A

not so much
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Second generation SLT
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Recap and what’s coming

We saw...

> SLT bounds the tall of the error distribution
> giving high confidence bounds on generalization
> VC gave uniform bounds over a set of classifiers
> and worst-case over data-generating distributions
> VC characterizes learnabillity (for a fixed class)

Coming up...

> exploiting non worst-case distributions
> bounds that depend on the chosen function
> new proof techniques
> approaches for deep learning and future directions
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Structural Risk Minimization

Why SLT First step towards non-uniform learnability.

Overview .

Notation : o H = Ukewn He  (countable union), eadty = VC(Hy) finite.
ftgeneion 2 Use a weighting schemey, weight of classHy, Y Wi < 1.

SeConC Ieneraton For eachk, PM[3f € H, A(f) > &] < wd, then union bound:

Next generation

Hencew.p.>1-46, [VkeN, Vhe H,, A(h) < & |

Comments:

m First attempt to introduce hypothesis-dependence
(i.e. complexity depends on the chosen function)

m The bound leads tolaound-minimizing algorithm

k(h) := minfk : h e 3y, return arg mifRn(h) + €
heJH
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Detecting benign distributions

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

SRM detects ‘right’ complexity for the particular problem,
but must define the hierarchy a priori

need to have more nuanced ways to detect how benign a
particular distribution is

SVM uses the margin: appears to detect ‘benign’
distribution in the sense that data unlikely to be near
decision boundary- easier to classify

Audibert & Tsybakov: minimax asymptotic rates for the
error for class of distributions with reduced margin dgnsit

Marchand and S-T showed how sparsity can also be an
Indicator of a benign learning problem

All examples of luckiness framework that shows how SR}
can be made data-dependent
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Case study: Margin

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

Maximising the margin frequently makes it possible to
obtain good generalization despite high VC dimension

The lower bound implies that SVMs must be taking
advantage of a benign distribution, since we know that in
the worst case generalization will be bad.

Hence, we require a theory that can give bounds that are
sensitive to serendipitous distributions, with the maagin
Indication of such ‘luckiness’.

One intuition: if we use real-valued function classes, the
margin will give an indication of the accuracy with which
we need to approximate the functions
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Three proof techniques

Why SLT We will give an introduction to three proof techniques

Overview

Notation

First generation

Second generation _ -

Next generation =

NeurlPS 2018

First is motivated by approximation accuracy idea:
> Covering Numbers

Second again uses real value functions but reduces to hc
well the class can align with random labels:
> Rademacher Complexity

Finally, we introduce an approach inspired by Bayesian
Inference that maintains distributions over the functions
> PAC-Bayes Analysis
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Covering numbers

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

As with VC bound use the double-sample trick to reduce
the problem to a finite set of points (actual & ghost sampl

find a set of functions that cover the performances of the
function class on that set of points, up to the accuracy of
margin

In the cover there is a function close to the learned functic
and because of the margin it will have similar performanc
on train and test, so can apply symmetrisation

Apply the union bound over the cover
Effective complexity is the log of the covering numbers

This can be bounded by a generalization of the VC
dimension, known as the fat-shattering dimension

Slide 30/52



Rademacher Complexity

Why SLT

Overview

Notation

First generation

Second generation _ -

Next generation

Starts from considering the uniform (over the class) boumthe gap:

PM[Vh e H, A(h) < €] = P"[supA(h) < €]
he H

Original sampleS = (Z3,...,Zyn), A(h) = Roui(h) = Rn(h, S)
Ghost sample: S’ = (Z,...,Z), Rou(h) = E"[Rin(h,S)]

[supA(h) < B2

sup— Z £(h,z)) - t(h, zi)]}

heH het M i—1
: m
symmetrizatior——>=E""E, [sup— Z [£(h, Z7) — £(h, Zn)]]
e b E . th'C -1
oi’s I.1.d.:symmetric{+1}-valued -
Ra@iemacher r.v.'s < 2EME, |sup= Z (h,Z ]
. thH: -1

NeurlPS 2018

> Rademacher complexity of a class
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Generalization bound from RC

WhyS.LT Empirical | R, S = B |SUp= ZO'| £(h(X), Y.)]
Overview . Rademacher complexit hegt M

Notation

frstgeneraton ¢ Rademacher complex'rty[ R(H) = EMR(H, Sm)]]

Second generation -+

Nedgeneraion: gy Symmetrization » Em[supA(h)] < 2R(H)

heH

m McDiarmid’s ineq. » supA(h)SE,f‘ﬂ[_c,w;,A(h)]Jr \/i Iog(})
(W.p.>1-9) hed( he 2m 0

m McDiarmid’'sineq. » R(H) < R(H, Sp) + \/fn Iog(l)
(W.p.>1-9)

For anym, for any¢ € (0, 1),

w.p.>1-9, [Vh e J(, A(h) < 2R(3H, Sp) + 3\/2%1 Iog(%)]

NeurlPS 2018 3 Slide 32/52



Rademacher Complexity of SVM

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

Let F(«, B) be the class of real-valued functions in a featut
space defined by kernelith 2-norm of the weight vector
w bounded byB

R(F(x, B), Sm) = ;\JZ k(Xi, Xi)

=1

Hence, control complexity by regularizing with the 2-normy
while keeping outputs atl: gives SVM optimisation with
hinge loss to take real valued to classification

Rademacher complexity controlled as hinge loss is a
Lipschitz function

putting pieces together gives bound that motivates the S\
algorithm with slack variable§ and marginy = 1/[|w/||
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Error bound for SVM

Why SLT

Overview

Notation

First generation

m  Upper bound on the generalization error:

Second generation -«

Next generation

i=1

1 ¢ 4 | \/ log(2/6)
m_y;§i+m_y¢zl<(xiaxi)+3 om
m Forthe Gaussian kernel this reduces to

log(2/9)
ST -
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Comments on RC approach

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

This gives a plug-and-play that we can use to derive bounds
based on Rademacher Complexity for other kernel-based
(2-norm regularised) algorithms, e.g.

kernel PCA

kernel CCA

one-class SVM
multiple kernel learning
regression

Approach can also be used for 1-norm regularised methods :
Rademacher complexity is not changed by taking the convex
hull of a set of functions, e.g. LASSO and boosting
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The PAC-Bayes framework

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

m Before data, fix a distributio@y € M,(JH) » ‘prior
m Based on data, learn a distributi@he M,(JH) > ‘posteriot
= Predictions:
e drawh ~ Q and predict with the chosdn
e each prediction with a fresh random dra

Therisk measure®,(h) andR,(h) areextended by averaging

[ R(Q = [ R Q)| [ Rou(Q) = [, Roulh) dQ(h) |

Typical PAC-Bayes bound:
Fix Qo. For any sample siza, for any¢ € (0, 1), w.p. > 1 -9,

KL(QIIQo) + log(:2) }

m

[VQ KL(Rin(Q)IIRou(Q)) <

Slide 36/52



PAC-Bayes bound for SVMs

Why SLT N

Overview [Wm — ASVM (Sm)9 Wm — Wm/“Wm“]

First generation For anym1 for any5 S (09 1)’

Second genération I g( m+1 )
Next generation Wp Z l — 5, KL(Rm(Q/l)”ROUt(Q/J)) ~ m

Gaussian randomization:
® QO — N(09 I)

® — 1,2
e Q)= N(/lwm, ) KL(Qul1Qo) SH

Rin(Qu) = E"[F(uy(x, y))] whereF () = 1 - == [ " e?i2d

SVM generalization errog 2 minRyu(Q,)
u
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Results

Classifier
SVM nPrior SVM
Problem 2FCV | 10FCV | PAC | PrPAC | PrPAC | T-PrPAC
digits Bound . - 0.175| 0.107 | 0.050 | 0.047
CE | 0.007| 0.007 | 0.007| 0.014 | 0.010 | 0.009
waveform| Bound . - 0.203| 0.185 | 0.178 | 0.176
CE | 0.090| 0.086 | 0.084| 0.088 | 0.087 | 0.086
pima Bound . - 0.424| 0.420 | 0.428 | 0.416
CE | 0.244| 0.245 | 0.229| 0.229 | 0.233 | 0.233
ringnorm | Bound . - 0.203| 0.110 | 0.053 | 0.050
CE | 0.0l16| 0.016 | 0.018| 0.018 | 0.016 | 0.016
Spam Bound . - 0.254| 0.198 | 0.186 | 0.178
CE | 0.066| 0.063 | 0.067| 0.077 | 0.070 | 0.072

NeurlPS 2018
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PAC-Bayes bounds vs. Bayesian learning

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

Prior

PAC-Bayes boundsounds hold even if prior incorrect
Bayesian inference must assume prior is correct

Posterior

PAC-Bayes boundsound holds for all posteriors
Bayesian posterior computed by Bayesian inference

Data distribution

PAC-Bayes boundsan be used to define prior, hence
no need to be known explicitly: see below

Bayesian input dfectively excluded from the analysis:
randomness in the noise model generating the output
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Hitchhiker’s guide

Why SLT

Overview 2nd generatioh .| practical algorithm
: ) \

Notation :

First generation [t|ghte|‘ bOUﬂC@S

Second generation - A

Next generation

refined

A

Y

| known heuristics [proof technique]s
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Next generation SLT
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Performance of deep NNs

Why SLT

Overview

Notation

First generation

Second generation s

Next generation

NeurlPS 2018

Deep learning has thrown down a challenge to SLT: very
good performance with extremely complex hypothesis
classes

Recall that we can think of the margin as capturing an
accuracy with which we need to estimate the weights

If we have a deep network solution with a wide basin of
good performance we can take a similar approach using
PAC-Bayes with a broad posterior around the solution

Dziugaite and Roy have derived useful bounds in this way

There have also been suggestions that stability of SGD i<
Important in obtaining good generalization

We present stability approach combining with PAC-Bayes
and argue this results in a new learning principle linked tc
recent analysis of information stored in weights
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Stability

Why SLT Uniform hypothesis sensitivitg at sample sizen:

1 A(Zim) — AZ I <B XN 1z # Z]
(21, ...,2) \(z’l,...,z;n)

m A(Zim) € H normed space = Lipschitz
m W, =A(zym) ‘Weight vector’ = smoothness

Notation

First generation

Second generation -«

Next generation

Uniform loss sensitivity3 at sample sizen:

€(A(zm), 2) — UA(Z,). DI < B X4 Uz # Z]

m WoOrst-case m distribution-insensitive
m data-insensitive = Open data-dependent?
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Generalization from Stability

Why SLT

Overview

Notation

First generation

Second generation _

Next generation

NeurlPS 2018

If A has sensitivity3 at sample sizen, then for anyw € (0, 1),
w.p.21-6, [ Rou(h) < Rn(h) + €(8.m ) |

(e.g. Bousquet & Eliss¢B

= the intuition is that if individual examples do natect the
loss of an algorithm then it will be concentrated

= can be applied to kernel methods whgnes related to the
regularisation constant, but bounds are quite weak

m guestion: algorithm output is highly concentrated
— stronger results?
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Distribution-dependent priors

Why SLT

Overview

Notation

First generation

Second generation _

Next generation

NeurlPS 2018

The idea of using a data distribution defined prior was
pioneered by Catoni who looked at these distributions:

Qo andQ are Gibbs-Boltzmann distributions
QO(h) _ = —yrlsk(h) Q(h) —yrlsks(h)

These distributions are hard to work with since we canno
apply the bound to a single weight vector, but the bounds
can be very tight:

KL, (Qs(M)IIQn(y)) < _[ Jm \/In Al i lem +in 4\5/m]

as it appears we can choggemall even for complex
classes.
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Stability + PAC-Bayes

Why SLT

Overview

Notation

First generation

Second generation

Next generation

NeurlPS 2018

If A has uniform hypothesis stabilig/at sample size, then
foranyoé € (0,1), w.p. > 1 - 26,

( ) > ~
- (1 + \/% log(3) L+ log(=2)
KL(Rn(Q)IIRout(Q)) < T\
N _J
Gaussian randomization
o Qo = N(E[W,], °l)

_ ! :
e Q = N(W,, 021) o KL(QIIQo) = 571V E[W,]||

Main proof components:

o Wp.21-5, KLRa(QIRou(Q) < e 0oE) /
m wp.>1-6, [W,—E[W]|< \/ﬁﬁ(1+ \/% |og(%))
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Information about Training Set

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

NeurlPS 2018

Achille and Soatto studied the amount of information stor
In the weights of deep networks

Overfitting is related to information being stored in the
weights that encodes the particular training set, as opos
to the data generating distribution

This corresponds to reducing the concentration of the
distribution of weight vectors output by the algorithm

They argue that the Information Bottleneck criterion can
control this information: hence could potentially lead to a
tighter PAC-Bayes bound

potential for algorithms that optimize the bound
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Hitchhiker’s guide

Why SLT

Overview

Notation

First generation

Second generation -«

Next generation

—{ hyper-lift]

SLT

sometime sooh
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Why SLT

Overview

Notation

First generation

Second generation

Next generation

NeurlPS 2018

Thank you!
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