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Reusability
Reproducibility

Robustness

Using the same materials as 
were used by the original 
investigator. 

Bollen et al. 
National Science Foundation, 2015.

“Reproducibility refers to 
the ability of a researcher 
to duplicate the results of a
prior study…. 

Reproducibility is a minimum 
necessary condition for a finding to 
be believable and informative.”



Reproducibility crisis in science (2016)

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
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Reinforcement learning (RL)
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state,
reward action

Learn ! = strategy to find this cheese!

Environment

Ø Very general framework for 
sequential decision-making!

Ø Learning by trial-and-error, 
from sparse feedback.

Ø Improves with experience, 
in real-time.



Impressive successes in games!
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Elf



RL applications beyond games

• Robotics
• Video games
• Conversational systems
• Medical intervention
• Algorithm improvement
• Crop management
• Personalized tutoring
• Energy trading
• Autonomous driving
• Prosthetic arm control
• Forest fire management
• Financial trading
• Many more!
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Adaptive neurostimulation
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state, reward action

Panuccio, Guez, Vincent, Avoli, Pineau, Exp Neurol, 2013
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Pineau

RL in simulation  � RL in real-world
from ~101 – 102 trials



25+ years of RL papers
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P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, D. Meger.
Deep Reinforcement Learning that Matters.  AAAI 2017 (+updates). 

# of papers per year



RL via  Policy gradient methods

Maximize expected return, ! ", $% = '[ )0 + )1 + … + rT | s0 ]

using gradient ascent:
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Policy gradient papers

» Evolution-Guided Policy Gradient in Reinforcement Learning

» On Learning Intrinsic Rewards for Policy Gradient Methods

» Evolved Policy Gradients

» Policy Optimization via Importance Sampling

» Dual Policy Iteration

» Post: Device Placement with Cross-Entropy Minimization and Proximal Policy Optimization

» Genetic-Gated Networks for Deep Reinforcement Learning
» Simple random search of static linear policies is competitive for reinforcement learning

» Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models

» …..

Most papers use same policy gradient baseline algorithms.
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Many more at ICLR’18, ICML’18, AAAI’18, EWRL’18, CoRL’18, … 



Policy gradient baseline algorithms

Same standard baselines used in all of these papers:

» Trust Region Policy Optimization (TRPO), Schulman et al. 2015.

» Proximal Policy Optimization (PPO), Schulman et al. 2017.

» Deep Deterministic Policy Gradients (DDPG), Lillicrap et al. 2015.

» Actor-Critic Kronecker-Factored Trust Region (ACKTR), Wu et al. 2017.
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Consider Mujoco simulator:

Alg.1
Alg.2
Alg.3
Alg.4

Robustness of policy gradient algorithms

Video taken from:
https://gym.openai.com/envs/HalfCheetah-v1
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Consider Mujoco simulator:
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Alg.1
Alg.2
Alg.3
Alg.4

Alg.1
Alg.2
Alg.3
Alg.4

Alg.1
Alg.2
Alg.3
Alg.4

Robustness of policy gradient algorithms



Codebase comparison

TRPO implementations:
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Codebase comparison

TRPO implementations:

17



Effect of hyperparameter configurations

Unit activation:
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Policy network structure:



An intricate interplay of hyperparameters!

How motivated are we to find the best hyperparameters for our baselines?
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Fair comparison is easy, right?
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Same amount of data. Same amount of computation.



Let’s look a little closer
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n=5

n=5



Let’s look a little closer
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Both are same TRPO code with best hyperparameter configuration! 

n=5

n=5



How should we measure performance 
of the learned policy?
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• Average return over test trials?

• Confidence interval? + How do we pick n?

Alg.1
Alg.2
Alg.3
Alg.4



How many trials?
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Consider the case of n=10
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Consider the case of n=10
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• Strong positive bias:  seems to beat the baseline!

• Variance appears much smaller.

Baseline to beat Baseline to beat

Top-3 results
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https://www.alexirpan.com/2018/02/14/rl-hard.html



From fair comparisons…

• Different methods have distinct sets of hyperparameters.

• Different methods exhibit variable sensitivity to hyperparams.

• What method is best often depends on data/compute budget.
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to robust conclusions.



Yes:
• Paper has experiments 100%
• Paper uses neural networks 90%
• All hyperparams for proposed algorithm are provided. 90%
• All hyperparams for baselines are provided. 60%
• Code is linked. 55%
• Method for choosing hyperparams is specified 20%
• Evaluations on some variation of a hold-out test set 10%
• Significance testing applied 5%
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We surveyed 50 RL papers from 2018
(published at NeurIPS, ICML, ICLR)
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Let’s add a
little shade!

We surveyed 50 RL papers from 2018
(published at NeurIPS, ICML, ICLR)
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How about a reproducibility checklist?



How about a reproducibility checklist?
For all algorithms presented, check if you include:
q A clear description of the algorithm.
q An analysis of the complexity (time, space, sample size) of the algorithm.
q A link to downloadable source code, including all dependencies.

For any theoretical claim, check if you include:
q A statement of the result.
q A clear explanation of any assumptions.
q A complete proof of the claim. 
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q A clear description of the algorithm.
q An analysis of the complexity (time, space, sample size) of the algorithm.
q A link to downloadable source code, including all dependencies.

For any theoretical claim, check if you include:
q A statement of the result.
q A clear explanation of any assumptions.
q A complete proof of the claim. 

For all figures and tables that present empirical results, check if you include:
q A complete description of the data collection process, including sample size.
q A link to downloadable version of the dataset or simulation environment.
q An explanation of how sample were allocated for training / validation / testing.
q An explanation of any data that was excluded.
q The range of hyper-parameters considered, method to select the best hyper-parameter 

configuration, and specification of all hyper-parameters used to generate results.
q The exact number of evaluation runs.
q A description of how experiments were run.
q A clear definition of the specific measure or statistics used to report results.
q Clearly defined error bars.
q A description of results including central tendency (e.g. mean) and variation (e.g. stddev).
q The computing infrastructure used.



The role of infrastructure on reproducibility
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The role of infrastructure on reproducibility
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Myth or fact?

36

Reinforcement Learning is the only case of ML 

where it is acceptable to test on your training set.
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The RL generalization roadmap

Classical RL
Train/test on 
same task.

AGI
Test on

anything!
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The RL generalization roadmap
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Classical RL
Train/test on 
same task.

AGI
Test on

anything!

Separate
rnd seeds

for train / test

Separate
tasks

for train / test

The RL generalization roadmap



Generalization in RL
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Results from Zhang, Ballas, Pineau, ArXiv 2018
See also Zhang, Vinyals, Munos, Bengio 2018

!rr = "
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Generalization in RL
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Results from Zhang, Ballas, Pineau, ArXiv 2018
See also Zhang, Vinyals, Munos, Bengio 2018

!rr = "
#∑#%('(|'*~,-.,0) -

"
1∑1%('(|'*~,-2,-,0) 

Standard RL Acrobot simulator



Generalization in RL
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Results from Zhang, Ballas, Pineau, ArXiv 2018
See also Zhang, Vinyals, Munos, Bengio 2018

Standard RL Acrobot simulator

!rr = "
#∑#%('(|'*~,-.,0) -

"
1∑1%('(|'*~,-2,-,0) 

From JC Gamboa Higuera, D. Meger, G. Dudek, ICRA’17.



Natural world has incredible complexity!
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Many RL benchmarks are ridiculously simple!

Ø Low-dim state space (Mujoco)

Ø Small number of actions (ALE)

Ø Few initial states

Ø Deterministic transitions and rewards

Ø Short description length, e.g. <100KB.

Easy to memorize!  Brittle to perturbations.
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Natural world  =>  RL simulation
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Zhang, Ballas, Pineau, ArXiv 2018

Lantana camara!

RL actions



Natural world  =>  RL simulation
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Lantana camara!

Zhang, Ballas, Pineau, ArXiv 2018
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Real-world video  =>  RL simulation

48Breakout (Atari) Zhang, Wu, Pineau, 2018



Real-world video  =>  RL simulation
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Breakout (Atari)

Original

What is going on?

• Add random video in background: 
“natural” noise + game strategy.

• Different train/test video
=> clear train/test separation.

• Fast and plentiful data acquisition.

• Easy replication and comparison.

Zhang, Wu, Pineau, 2018



What is next?  Embodied Intelligence via Photorealistic Simulators

Colleagues at FAIR + Georgia Tech + FRL

Whelan et al., 2018 (Facebook Reality Labs)

Multi-task RL in Photorealistic Simulators



Myth or fact?

51

Classical RL
Train/test on 
same task.

AGI
Test on

anything!

Separate
rnd seeds

for train / test

The RL generalization roadmap

Separate
image/video
background

Multi-task
photorealistic

simulator

Not necessarily!

Reinforcement Learning is the only case of ML 

where it is acceptable to test on your training set.



Step out into the real-world!
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Reusability

Reproducibility

Robustness

Science is a collective 
institution that aims to 
understand and explain. 
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Reproducibility
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Science is a collective 
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understand and explain. 
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Thank you!


