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Overview
• Practical Recipes of Unsupervised Learning 

• Learning representations 

• Learning to generate samples 

• Learning to map between two domains 

• Open Research Problems
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DISCLAIMER
This tutorial is not an exhaustive list of all relevant works!  
Goal: overview major research directions in the field and 
provide pointers for further reading. 
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Learning Representations:  
Continuous Case

Toy illustration of the data 4



Learning Representations

Toy illustration of the data

TIP #1: Always “look” at your data before 
designing your model!

• mean & covariance analysis
• PCA (check eigenvalue decay)
• t-sne visualization5



Learning Representations

Features are (hopefully) useful in down-stream tasks

0.1 
-2.0 
0.3 
0.7 

-0.2 
-1.9

representation learned using 
unsupervised learning

Task 1: is this person smoking? 

Task 2: how likely is this person to have diabetes?



Learning Representations

TIP #2: PCA and K-Means (at the patch level) are 
very often a strong baseline.
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Learning Visual Representations

• Brief History 

• Self-Supervised Learning 

• Other Approaches
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Unsup. Feature Learning in 
Vision

PCA
Wavelets

Auto-encoders

Sparse Coding

“DBN”
SSL (reborn)
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DCT

1989 20061996 20142012

cold

hot

SIFT

19991986
BackProp & AE

Connectionism

Feature engineering

Feature Learning

SSL

how ML community feels about 
unsup. feature learning



The Vision Architecture

https://towardsdatascience.com/build-your-own-convolution-neural-network-in-5-mins-4217c2cf964fCredit for figure::

Convolutional Neural Network

Y. LeCun et al. “Gradient-Based Learning Applied to Document Recognition”, IEEE 1998

A. Krizhevsky et al. “Imagenet classification with CNNs”, NIPS 2012

K. He et al. “Deep Residual Learning for Image Recognition”, CVPR 2016

https://ranzato.github.io/publications/ranzato_deeplearn17_lec1_vision.pdf

https://towardsdatascience.com/build-your-own-convolution-neural-network-in-5-mins-4217c2cf964f
https://ranzato.github.io/publications/ranzato_deeplearn17_lec1_vision.pdf


Self-Supervised Learning

• Unsupervised learning is hard: model has to reconstruct 
high-dimensional input. 

• With domain expertise define a prediction task which 
requires some semantic understanding. 

• conditional prediction (less uncertainty, less high-dimensional) 
• often times, original regression is turned into a classification task
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SSL on Static Images: 
Example

C. Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Input: two image patches from the same image. 
Task: predict their spatial relationship.
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SSL: example 1

13
C. Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



CNN

CNN
classifier

“3”

loss

SSL on Static Images: 
Example

14
C. Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Input Nearest Neighbors in Feature Space
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C. Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pascal VOC Detection

AP

40

45

50

55

60

Random Init This Work Imagenet Init.
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C. Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pascal VOC Detection

AP

40

45

50

55

60

Random Init This Work Imagenet Init.
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K. He et al. “Rethinking ImageNet pretraining”, arXiv 2018 shows 
that with better normalization and with longer training, random 

initialization works as well as ImageNet pretraining!

C. Doersch et al. “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



SSL on Static Images: 
Other Examples

• Predict color from gray scale values. 

• Predict image rotation
R. Zhang et al. “Colorful Image Colorization”, ECCV 2016

S. Gidaris et al. “Unsupervised Representation Learning by Predicting Image 
Rotations”, ICLR 2018

18

TIP #3: Often times, you can learn features 
without explicitly predicting pixel values.

TIP #4: If you are OK using domain knowledge, 
you can learn using a variety of auxiliary tasks.



SSL on Videos: Example
• Predict whether the video snippet is playing forward or 

backward. 

• Requires to understand gravity, causality, friction, …

D. Wei et al. “Self-supervision using the arrow of time”, CVPR 2018

FWD

19



• Predict whether the video snippet is playing forward or 
backward. 

• Requires to understand gravity, causality, friction, …

D. Wei et al. “Self-supervision using the arrow of time”, CVPR 2018

SSL on Videos: Example

BWD
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SSL on Videos: Example

CNN

CNN

classifier

“fwd/bwd”

loss

D. Wei et al. “Self-supervision using the arrow of time”, CVPR 2018

RGB + optical flow

time t

time t+k
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UCF101 Action Recognition

D. Wei et al. “Self-supervision using the arrow of time”, CVPR 2018

Ac
cu

ra
cy

 %

80

81.75

83.5

85.25

87

Random Init This Work Imagenet Init.

First train using SSL, and then finetune on the task.
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SSL: Other Examples
• Learn features by colorizing video sequences. 

• Predict whether and how frames are shuffled
C. Vondrik et al. “Tracking emerges from colorizing videos”, ECCV 2018

I. Misra et al. “Shuffle and laern: unsupervised learning using temporal order 
verification”, ECCV 2016

23

E. Denton et al. “Unsupervised learning of disentangled representations from video”, 
NIPS 2017

• Future frame prediction 

• Predict one modality from the other
V. de Sa “Learning classification from unlabeled data”, NIPS 1994 
… 
R. Arandjelovic et al. “Object that sound”, ECCV 2018 



Learning Visual Representations

• Brief History 

• Self-Supervised Learning 

• Other Approaches
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Learning by Clustering
• CNN architecture has many good inductive biases, 

such as: 
• spatio-temporal stationarity,  
• scale invariance,  
• compositionality, etc. 

• (Small) random filters have orientation-frequency 
selectivity.  

• As a result, even randomly initialized CNNs extract 
non-trivial features.

25



Learning by Clustering
Randomly initialize the CNN. 

Repeat: 

1. Extract features from each image and run K-Means 
in feature space. 

2. Train the CNN in supervised mode to predict the 
cluster id associated to each image (1 epoch).

M. Caron et al. “Deep clustering for unsupervised learning of visual features”, ECCV 2018
26



Learning by Clustering

Caveat: watch out for cheating… 

• cluster collapsing (re-assign images to empty clusters) 

• equalize clusters at training time

M. Caron et al. “Deep clustering for unsupervised learning of visual features”, ECCV 2018
27



ImageNet Classification
Ac

cu
ra

cy
 @

1 
%

10

22.5

35

47.5

60

Random Init Relative Pos. Jigsaw Puzzle Colorization Deep Clusering Supervised

First train unsupervised, then train MLP with 
supervision using unsupervised features.

Doersch 2015

Noroozi 2016

Zhang 2016

Caron 2018
28



Conclusions on Unsupervised 
Learning of Visual Features

• In general, still a seizable gap between unsupervised 
feature learning and supervised learning in vision. 

• Pixel prediction is hard, many recent approaches define 
auxiliary classification tasks. 

• Domain knowledge can inform the design of tasks that 
require some level of semantic understanding. 

• Network will “cheat” if you are not careful: 
• check for trivial solutions 
• check for biases and artifacts in the data
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Overview

30

• Practical Recipes of Unsupervised Learning 

• Learning representations: continuous / discrete 

• Learning to generate samples: continuous / discrete 

• Learning to map between two domains: continuous / discrete 

• Open Research Problems



Vision <—> NLP
• Atomic unit: 

• a word in NLP carries a lot of information. 
• a pixel value in Vision carries negligible information 

• Nature of the signal: 
• discrete in NLP: search is hard but modeling of uncertainty is 

easy. 
• continuous in Vision: search is easy but modeling of 

uncertainty is hard.

31



Unsup. Feature Learning in NLP

Boole
Minsky & Papert

RNN
neural language model

BERT

1854 1936
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1969 ‘01’90 2018‘86
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word2vec

T. Mikolov et al. “Efficient estimation of word representations in vector space” arXiv 2013

“All of the sudden a cat jumped from a tree to chase a mouse.”

The meaning of a word is determined by its context.
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word2vec

T. Mikolov et al. “Efficient estimation of word representations in vector space” arXiv 2013

“All of the sudden a __ jumped from a tree to chase a mouse.”

The meaning of a word is determined by its context.

34



word2vec

T. Mikolov et al. “Efficient estimation of word representations in vector space” arXiv 2013

The meaning of a word is determined by its context.

“All of the sudden a kitty jumped from a tree to chase a mouse.”

Two words mean similar things if they have similar context.

35



T. Mikolov et al. “Efficient estimation of word representations in vector space” arXiv 2013

The meaning of a word is determined by its context.
Two words mean similar things if they have similar context.

36

apple 
bee 
cat 

dog 
… 
…

word embedding
lookup table



from https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit credit T. Mikolov 37

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit


Recap word2vec
• Word embeddings are useful to: 

• understand similarity between words 
• convert any discrete input into continuous -> ML 

• Learning leverages large amounts of unlabeled data. 

• It’s a very simple factorization model (shallow). 

• There are very efficient tools publicly available.
https://fasttext.cc/

Joulin et al. “Bag of tricks for efficient text classification” ACL 2016



Representing Sentences

• word2vec can be extended to small phrases, but 
not much beyond that. 

• Sentence representation needs to leverage 
compositionality. 

• A lot of work on learning unsupervised sentence 
representations (auto-encoding / prediction of 
nearby sentences). 

39



BERT

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018

<s> The cat sat on the mat <sep> It fell asleep soon after

40



BERT

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018

<s> The cat sat on the mat <sep> It fell asleep soon after

One block chain per word
 like in standard deep learning

41



BERT

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018

<s> The cat sat on the mat <sep> It fell asleep soon after

Each block receives input from all the blocks below.
Mapping must handle variable length sequences…

42



BERT

A. Vaswani et al. “Attention is all you need”, NIPS 2017

<s> The cat sat on the mat <sep> It fell asleep soon after

This accomplished by using attention 
(each block is a Transformer)

<s> The cat sat on the mat <sep> It fell asleep soon after

For each layer and for each block in a layer do (simplified version): 
1) let each current block representation at this layer be: 

2) compute dot products: 

3) normalize scores: 

4) compute new block representation as in:

hj

hi · hj

↵i =
exp(hi · hj)P
k exp(hk · hj)

hj  
X

k

↵khk

43



BERT

A. Vaswani et al. “Attention is all you need”, NIPS 2017

<s> The cat sat on the mat <sep> It fell asleep soon after

This accomplished by using attention 
(each block is a Transformer)

<s> The cat sat on the mat <sep> It fell asleep soon after

For each layer and for each block in a layer do (simplified version): 
1) let each current block representation at this layer be: 

2) compute dot products: 

3) normalize scores: 

4) compute new block representation as in:

hi · hj

↵i =
exp(hi · hj)P
k exp(hk · hj)

hj  
X

k

↵khk

in practice different features are used 
at each of these steps…

44

hj



BERT

<s> The cat sat on the mat <sep> It fell asleep soon after

The representation of each word at each layer
depends on all the words in the context.

And there are lots of such layers…

<s> The cat sat on the mat <sep> It fell asleep soon after

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018 45



BERT: Training

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018

<s> The cat sat on the mat <sep> It fell asleep soon after

? ?
Predict blanked out words.

46



BERT: Training

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018

<s> The cat sat on the mat <sep> It fell asleep soon after

? ?
Predict blanked out words.

47

TIP #7: deep denoising autoencoding is very powerful!



BERT: Training

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018

<s> The cat sat on the wine <sep> It fell scooter soon after

? ?
Predict words which were replaced with random words.

48



BERT: Training

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018

<s> The cat sat on the mat <sep> It fell asleep soon after

? ?
Predict words from the input.

49



BERT: Training

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018

<s> The cat sat on the  mat <sep> Unsupervised learning rocks

?
Predict whether the next sentence is taken at random.

50



GLUE Benchmark (11 tasks)
G

LU
E 

Sc
or

e

55

62.5

70

77.5

85

word2vec bi-LSTM ELMO GPT BERT

Unsupervised pretraining followed by supervised finetuning

J. Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language 
understanding”, arXiv:1810.04805, 2018 51

New SoA!!!



Conclusions on Learning 
Representation from Text

• Unsupervised learning has been very successful in NLP. 

• Key idea: learn (deep) representations by predicting a 
word from the context (or vice versa). 

• Current SoA performance across a large array of tasks.

52



Overview
• Practical Recipes of Unsupervised Learning 

• Learning representations 

• Learning to generate samples (just a brief mention)

• Learning to map between two domains 

• Open Research Problems
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Generative Models

Model Data

Useful for: 
• learning representations (rarely the case nowadays), 
• useful for planning (only in limited settings), or 
• just for fun (most common use-case today)…

54



Generative Models: Vision
• GAN variants currently dominate the field. 

• Choice of architecture (CNN) seems more crucial than 
learning algorithm.  

• Other approaches: 
• Auto-regressive 
• GLO 
• Flow-based algorithms. 

55

add refs 
show an example

T. Kerras et al. “Progressive growing of GANs for improved quality, stability, and 
variation”, ICLR 2018



Generative Models: Vision
• GAN variants currently dominate the field. 

• Choice of architecture (CNN) seems more crucial than 
learning algorithm.  

• Other approaches: 
• Auto-regressive 
• GLO 
• Flow-based algorithms. 

56

add refs 
show an example

A. Brock et al. “Large scale GAN training for high fidelity natural image synthesis” arXiv 
1809:11096 2018



Generative Models: Vision
• GAN variants currently dominate the field. 

• Other approaches: 

• Auto-regressive 

• GLO 

• Flow-based algorithms. 

• Choice of architecture (CNN) seems more crucial than 
actual learning algorithm.  

57

A. Oord et al. “Conditional image generation with PixelCNN”, NIPS 2016

P. Bojanowski et al. “Optimizing the latent state of generative networks”, ICML 2018

G. Papamakarios et al. “Masked auto-regressive flow for density estimation”, NIPS 2017

A. Brock et al. “Large scale GAN training for high fidelity natural image synthesis” arXiv 1809:11096 2018



Open challenges:  
• how to model high dimensional distributions, 
• how to model uncertainty, 
• meaningful metrics & evaluation tasks!

58
Anonymous “GenEval: A benchmark suite for evaluating generative models”, in submission to ICLR 2019

Generative Models: Vision



Generative Models: Text
• Auto-regressive models (RNN/CNN/Transformers) are good 

at generating short sentences. See Alex’s  examples. 

• Retrieval-based approaches are often used in practice. 

• The two can be combined 

59

A. Bordes et al. “Question answering with subgraph embeddings” EMNLP 2014 
R. Yan et al. “Learning to Respond with Deep Neural Networks for Retrieval-Based Human-
Computer Conversation System”, SIGIR 2016 
M. Henderson et al. “Efficient natural language suggestion for smart reply”, arXiv 2017 
… 

J. Gu et al. “Search Engine Guided Non-Parametric Neural Machine Translation”, arXiv 2017 
K. Guu et al. “Generating Sentences by Editing Prototypes”, ACL 2018 
…

I. Serban et al. “Building end-to-end dialogue systems using generative hierarchical neural network 
models” AAAI 2016 



Generative Models: Text
Open challenges:  

• how to generate documents (long pieces of text) that are 
coherent, 

• how to keep track of state, 

• how to model uncertainty, 

• how to ground, 

• meaningful metrics & standardized tasks!
60

M. Ott et al. “Analyzing uncertainty in NMT” ICML 2018 

starting with D. Roy / J. Siskind’s work from early 2000’s 



Overview
• Practical Recipes of Unsupervised Learning 

• Learning representations 

• Learning to generate samples 

• Learning to map between two domains

• Open Research Problems

61



Learning to Map

Toy illustration of the data

Domain 1 Domain 2

62



Learning to Map

Toy illustration of the data

What is the corresponding 
point in the other domain?

?

63

Domain 1 Domain 2



Why Learning to Map

• There are fun applications: making analogies in vision. 
• It is useful; e.g., enables to leverage lots of (unlabeled) 

monolingual data in machine translation. 
• Arguably, an AI agent has to be able to perform analogies 

to quickly adapt to a new environment.

64



Vision: Cycle-GAN

J. Zhu et al. “Unpaired image-to-image translation using cycle consistent adversarial networks”, 
ICCV 2017

Domain 1 Domain 2
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Vision: Cycle-GAN

J. Zhu et al. “Unpaired image-to-image translation using cycle consistent adversarial networks”, 
ICCV 2017 66



Vision: Cycle-GAN

J. Zhu et al. “Unpaired image-to-image translation using cycle consistent adversarial networks”, 
ICCV 2017 67



Vision: Cycle-GAN

J. Zhu et al. “Unpaired image-to-image translation using cycle consistent adversarial networks”, 
ICCV 2017

CNN1->2 CNN2->1
x x̂

ŷ

x

CNN1->2CNN2->1
x̂

ŷy

y

“cycle consistency”
rec. loss

rec. loss
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Vision: Cycle-GAN

J. Zhu et al. “Unpaired image-to-image translation using cycle consistent adversarial networks”, 
ICCV 2017

CNN1->2 CNN2->1
x x̂

ŷ

rec. loss

x

constrain generation to belong to desired domain

Classifier

adv. loss

true/fake

69



Unsupervised Machine Translation

• Similar principles may apply also to NLP, e.g. for 
machine translation (MT). 

• Can we do unsupervised MT? 
• There is little if any parallel data in most language pairs. 

• Challenges: 
• discrete nature of text 
• domain mismatch 
• languages may have very different morphology, grammar, ..

70

En It
Learning to translate without access to any single translation, 

just lots of (monolingual) data in each language.



Unsupervised Machine Translation

• Similar principles may apply also to NLP for machine 
translation (MT). 

• Can we do unsupervised MT? 
• There is little if any parallel data in most language pairs. 

• Challenges: 
• discrete nature of text 
• domain mismatch 
• languages may have very different morphology, grammar, ..

71



Unsupervised Word Translation

• Motivation: A pre-requisite for unsupervised 
sentence translation. 

• Problem: given two monolingual corpora in two 
different languages, estimate bilingual lexicon. 

• Hint: the context of a word, is often similar across 
languages since each language refers to the same 
underlying physical world.

72



1) Learn embeddings separately.  
2) Learn joint space via adversarial training + refinement.

Unsupervised Word Translation

A. Conneau et al. “Word translation without parallel data” ICLR 2018



Results on Word Translation

By using more anchor points and lots of unlabeled data, MUSE outperforms 
supervised approaches!

https://github.com/facebookresearch/MUSE

P@
1

60

62.5

65

67.5

70

supervised unsupervised

P@
1

50

52.5

55

57.5

60

supervised unsupervised

Italian->EnglishEnglish->Italian

https://github.com/facebookresearch/MUSE


Naïve Application of MUSE

• In general, this may not work on sentences because: 

• Without leveraging compositional structure, space is 
exponentially large. 

• Need good sentence representations. 

• Unlikely that a linear mapping is sufficient to align 
sentence representations of two languages.

75



encoder decodery h(y) x̂

Method

76

English Italian

We want to learn to translate, but we do not have targets…

G. Lample et al. “Phrase-based and neural unsupervised machine translation” EMNLP 2018



encoder decoder encoder decoder
en enit it

y h(y) x̂ h(x̂) ˆ̂y

Method

77

use the same cycle-consistency principle (back-translation)

G. Lample et al. “Phrase-based and neural unsupervised machine translation” EMNLP 2018



inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

en enit it

y h(y) x̂ h(x̂) ˆ̂y

outer-encoder outer-decoder

78

Method

How to ensure the intermediate output is a valid sentence? 
Can we avoid back-propping through a discrete sequence?

?

G. Lample et al. “Phrase-based and neural unsupervised machine translation” EMNLP 2018



Adding Language Modeling

inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

it enit en

outer-encoder outer-decoder

x+ n y + n

Since inner decoders are shared between the LM and MT task, it should 
constrain the intermediate sentence to be fluent. 

Noise: word drop & swap.

79
G. Lample et al. “Phrase-based and neural unsupervised machine translation” EMNLP 2018



Adding Language Modeling

inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

it enit en

outer-encoder outer-decoder

x+ n y + n

80

Potential issue: Model can learn to denoise well, reconstruct well from back-translated 
data and yet not translate well, if it splits the latent representation space.

G. Lample et al. “Phrase-based and neural unsupervised machine translation” EMNLP 2018



NMT: Sharing Latent Space

inner
encoder

inner
decoder

inner
encoder

inner
decoder

enit en

outer-encoder outer-decoder

x+ n y + n

it

Sharing achieved via: 
1) shared encoder (and also decoder).  
2) joint BPE embedding learning / initialize embeddings with MUSE.

Note: first decoder token specifies the language on the target-side.
81
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35
English-French English-German

Experiments on WMT

G. Lample et al. “Phrase-based and neural unsupervised machine translation” EMNLP 2018

Yang 2018

Yang 2018

This work

This work

Supervised

Supervised

Before 2018, performance of fully unsupervised methods was 
essentially 0 on these large scale benchmarks!
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Experiments on WMT



Distant & Low-Resource 
Language Pair: En-Ur

84

https://www.bbc.com/urdu/pakistan-44867259

G. Lample et al. “Phrase-based and neural unsupervised machine translation” EMNLP 2018

BL
EU

5

7.5

10

12.5

15

unsupervised supervised
(out-of-domain)(in-domain)

https://www.bbc.com/urdu/pakistan-44867259


Conclusion on Unsupervised 
Learning to Translate

• General principles: initialization, matching target 
domain and cycle-consistency. 

• Extensions: semi-supervised, more than two 
domains, more than a single attribute, … 

• Challenges: 
• domain mismatch / ambiguous mappings 
• domains with very different properties 
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Overview
• Practical Recipes of Unsupervised Learning 

• Learning representations 

• Learning to generate samples (just a brief mention) 

• Learning to map between two domains 

• Open Research Problems
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Challenge #1: Metrics & Tasks

87

Unsupervised Feature Learning: 
Q: What are good down-stream tasks?  
What are good metrics for such tasks? 

Generation:  
Q: What is a good metric?

In NLP there is some consensus for this: https://github.com/facebookresearch/SentEval
https://gluebenchmark.com/

In NLP there has been some effort towards this: http://www.statmt.org/
http://www.parl.ai/

https://github.com/facebookresearch/SentEval
http://www.statmt.org/


88

Unsupervised Feature Learning: 
Q: What are good down-stream tasks?  
What are good metrics for such tasks? 

Generation:  
Q: What is a good metric?

Only in NLP there is some consensus for this: https://gluebenchmark.com/

A. Wang et al. “GLUE: A multi-task benchmark and analysis platform for NLU” arXiv 1804:07461

In NLP there has been some effort towards this: http://www.statmt.org/
http://www.parl.ai/

What about in Vision?
Good metrics and representative tasks 

are key to drive the field forward.

Challenge #1: Metrics & Tasks

http://www.statmt.org/


Challenge #2: General Principle

89

Is there a general principle of unsupervised feature learning? 

The current SoA in NLP: word2vec, BERT, etc. are not entirely satisfactory - 
very local predictions of a single missing token..

E.g.:      This tutorial is   …          …         because I learned … …! 
Impute: This tutorial is really awesome because I learned  a lot! 
Feature extraction: topic={education, learning}, style={personal}, …

Ideally, we would like to be able to impute any missing information given some 
context, we would like to extract features describing any subset of input variables.



90

Is there a general principle of unsupervised feature learning? 

The current SoA in Vision: SSL is not entirely satisfactory - which auxiliary 
task and how many more tasks do we need to design?

Limitations of auto-regressive models: need to specify order among variables 
making some prediction tasks easier than others, slow at generation time.

The current SoA in NLP: word2vec, BERT, etc. are not entirely satisfactory - 
very local predictions of a single missing token..

Challenge #2: General Principle



A brief case study of a more general framework: EBMs

Input

Energy

Y. LeCun et al. “A tutorial on energy-based learning” MIT Press 2006

energy is a contrastive function, lower where data has high density

Challenge #2: General Principle



Input

Energy

Y. LeCun et al. “A tutorial on energy-based learning” MIT Press 2006

you can “denoise” / fill in

A brief case study of a more general framework: EBMs

Challenge #2: General Principle



One possibility: energy-based modeling

Y. LeCun et al. “A tutorial on energy-based learning” MIT Press 2006

you can do feature extraction using any intermediate representation from E(x)

input

energy

Challenge #2: General Principle



One possibility: energy-based modeling

Y. LeCun et al. “A tutorial on energy-based learning” MIT Press 2006

The generality of the framework comes at a price… 

Learning such contrastive function is in general very hard.

Challenge #2: General Principle



Encoder Decoder

input reconstruction

code/feature

Learning contrastive energy function by 
pulling up on fantasized “negative data”: 
• via search 
• via sampling (*CD) 
and/or by limiting amount of information 
going through the “code”: 
• sparsity 
• low-dimensionality 
• noise

K. Kavukcuoglu et al. “Fast inference in sparse coding algorithms…” arXiv 1406:5266 2008

M. Ranzato et al. “A unified energy-based framework for unsupervised learning” AISTATS 2007
A. Hyvärinen “Estimation of non-normalized statistical models by score matching” JMNR 2005

Challenge #2: General Principle



Challenge: If the space is very high-dimensional, it is difficult to 
figure out the right “pull-up” constraint that can properly shape the 
energy function. 

• Are there better ways to pull up?  
• Is there a better framework? 
• To which extent should these principles be agnostic of the 

architecture  and domain of interest? 

Challenge #2: General Principle



Challenge #3: Modeling Uncertainty

• Most predictions tasks have uncertainty. 

• Several ways to model uncertainty: 
• latent variables 
• GANs 
• using energies with lots of minima 

What are efficient ways to learn and do inference?

97

where is the red car going?



• Most predictions tasks have uncertainty. 

• Several ways to model uncertainty: 
• latent variables 
• GANs 
• using energies with lots of minima 

What are efficient ways to learn and do inference?
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E.g.:      This tutorial is   …          …         because I learned … …! 
Impute: This tutorial is really awesome because I learned  a lot! 
               This tutorial is so bad because I learned  really nothing! 
                  

Challenge #3: Modeling Uncertainty



• Most predictions tasks have uncertainty. 

• Several ways to model uncertainty: 
• latent variables 
• GANs 
• shaping energies to have lots of minima 
• quantizing continuous signals… 

What are efficient ways to learn and do inference? 

How to model uncertainty in continuous distributions?
99

Challenge #3: Modeling Uncertainty



The Big Picture
• A big challenge in AI: learning with less labeled data. 

• Lots of sub-fields in ML tackling this problem from other angles: 

• few-shot learning 

• meta-learning 

• life-long learning 

• transfer learning 

• semisupervised 

• … 

• Unsupervised learning is part of a broader effort.
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Unsupervised Learning should eventually be considered as a 
component within a bigger system. 

• RL models can work more efficiently by leveraging information present in 
the input observations (unsupervised learning). 

• Unsupervised learning is an important tool, but sparse rewards (RL) can 
inform about what unsupervised tasks are meaningful. Environment can 
provide further constraints.

you can’t eat just the cherry, nor just the filling….
you gotta eat a whole slice!

The Big Picture

picture/metaphor credit: Y. LeCun



Conclusions
• Unsupervised Learning is a key ingredient for any agent that  learns 

from few interactions / few labeled examples. 

• Lots of sub-areas: feature learning, learning to align domains, learning 
to generate samples, …  

• Unsupervised learning currently works very well in restricted settings 
and in few applications.  

• Biggest challenges: 
• metrics & tasks,  
• generality and efficiency of current algorithms, 
• integration of unsupervised learning with other learning 

components. 




