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Motivation & background

Big n

High-dimensional data (big p)
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Typical approaches to big data

j There is an increasingly immense literature focused on big data

j Most of the focus has been on optimization methods

j Rapidly obtaining a point estimate even when sample size n &
overall ‘size’ of data is immense

j Huge focus on specific settings - e.g., linear regression, labeling
images, etc

j Bandwagons: most people work on very similar problems, while
critical open problems remain untouched
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My focus - probability models

j General probabilistic inference
algorithms for complex data

j We would like to handle arbitrarily
complex probability models

j Algorithms scalable to huge data -
potentially using many computers

j Accurate uncertainty quantification (UQ) is a critical issue

j Robustness of inferences also crucial

Motivation & background 3



My focus - probability models

j General probabilistic inference
algorithms for complex data

j We would like to handle arbitrarily
complex probability models

j Algorithms scalable to huge data -
potentially using many computers

j Accurate uncertainty quantification (UQ) is a critical issue

j Robustness of inferences also crucial

Motivation & background 3



My focus - probability models

j General probabilistic inference
algorithms for complex data

j We would like to handle arbitrarily
complex probability models

j Algorithms scalable to huge data -
potentially using many computers

j Accurate uncertainty quantification (UQ) is a critical issue

j Robustness of inferences also crucial

Motivation & background 3



My focus - probability models

j General probabilistic inference
algorithms for complex data

j We would like to handle arbitrarily
complex probability models

j Algorithms scalable to huge data -
potentially using many computers

j Accurate uncertainty quantification (UQ) is a critical issue

j Robustness of inferences also crucial

Motivation & background 3



My focus - probability models

j General probabilistic inference
algorithms for complex data

j We would like to handle arbitrarily
complex probability models

j Algorithms scalable to huge data -
potentially using many computers

j Accurate uncertainty quantification (UQ) is a critical issue

j Robustness of inferences also crucial

Motivation & background 3



My focus - probability models

j General probabilistic inference
algorithms for complex data

j We would like to handle arbitrarily
complex probability models

j Algorithms scalable to huge data -
potentially using many computers

j Accurate uncertainty quantification (UQ) is a critical issue

j Robustness of inferences also crucial

Motivation & background 3



My focus - probability models

j General probabilistic inference
algorithms for complex data

j We would like to handle arbitrarily
complex probability models

j Algorithms scalable to huge data -
potentially using many computers

j Accurate uncertainty quantification (UQ) is a critical issue

j Robustness of inferences also crucial

Motivation & background 3



Bayes approaches

j Bayesian methods offer an attractive general approach for
modeling complex data

j Choosing a prior π(θ) & likelihood L(Y (n)|θ), the posterior is

πn(θ|Y (n)) = π(θ)L(Y (n)|θ)∫
π(θ)L(Y (n)|θ)dθ

= π(θ)L(Y (n)|θ)

L(Y (n))
.

j The posterior πn(θ|Y (n)) characterizes uncertainty in the
parameters, in any functional f (θ) of interest & in predictive
distributions

j Often θ is moderate to high-dimensional & the integral in
denominator is intractable

j Hence, in interesting models the posterior is not available
analytically - what to do??
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Classical Posterior approximations

j In conjugate models, can express the posterior in simple form -
e.g, as a multivariate Gaussian

j In more complex settings, can approximate posterior using
some tractable class of distributions

j Large sample Gaussian approximations:

πn(θ|Y (n)) ≈ N (µ̂n ,Σn)

Bayesian central limit theorem (Bernstein von Mises)
j Relies on sample size n large relative to # parameters p,

likelihood smooth & differentiable, true value θ0 in interior of
parameter space

j Related class of approximations use a Laplace approximation to∫
π(θ)L(Y (n)|θ)dθ
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Alternative analytic approximations

j As an alternative to Laplace/Gaussian approximations, we can
define some approximating class q(θ)

j q(θ) may be something like a product of exponential family
distributions parameterized by ξ

j We could think to define some discrepancy between q(θ) and
πn(θ) =πn(θ|Y (n))

j If we can optimize ξ to minimize discrepancy, resulting q̂(θ) may
give us a decent approximation

j Basis of variational Bayes, expectation-propagation & related
methods
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Variational Bayes - brief comments

j ICML 2018 tutorial by Tamara Broderick
<www.tamarabroderick.com>

j Based on maximizing a lower bound discarding an intractable
term in KL divergence

j In general have no clue how accurate the approximation is

j Often posterior uncertainty badly under-estimated, though there
are some fix-ups; e.g., Giordano, Broderick & Jordan (2015)

j Fix-ups improve the variance characterization in a local mode

j Recent article: “On statistical optimality of variational Bayes”
Pati, Bhattacharya & Yang, arXiv:1712.08983.

j No theory on accuracy of UQ
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Markov chain Monte Carlo

j Hence, accurate analytic approximations to the posterior have
proven elusive outside of narrow settings

j Markov chain Monte Carlo (MCMC) & other posterior sampling
algorithms provide an alternative

j MCMC: sequential algorithm to obtain correlated draws from the
posterior:

πn(θ|Y (n)) = π(θ)L(Y (n)|θ)∫
π(θ)L(Y (n)|θ)dθ

= π(θ)L(Y (n)|θ)

L(Y (n))
.

j MCMC bypasses need to approximate the marginal likelihood
L(Y (n))

j Often samples more useful then an analytic form for πn(θ)
anyway

j Can use samples to calculate a wide variety of posterior &
predictive summaries of interest
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MCMC

j MCMC-based summaries of the posterior for any functional f (θ)

j As the number of samples T increases, these summaries
become more accurate

j MCMC constructs Markov chain with stationary distribution
πn(θ|Y (n))

j A transition kernel is carefully chosen & iterative sampling
proceeds

j Most MCMC algorithms types of Metropolis-Hastings (MH):

1. θ∗ ∼ g (θ(t−1)) = sample a proposal (θ(t )=sample at step t )
2. Accept proposal by letting θ(t ) = θ∗ with probability

min

{
1,

π(θ∗)L(Y (n)|θ∗)

π(θ(t−1))L(Y (n)|θ(t−1))

g (θ(t−1))

g (θ∗)

}

Motivation & background 9
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Comments on MCMC & MH in particular

j Design of “efficient” MH algorithms involves choosing good
proposals g (·)

j g (·) can depend on the previous value of θ & on the data but not
on further back samples - except in adaptive MH

j Gibbs sampler: Letting θ = (θ1, . . . ,θp )′ we draw subsets of θ
from their exact conditional posterior distributions fixing the
others

j Random walk: g (θ(t−1)) is a distribution centered on θ(t−1) with
a tunable covariance

j HMC/Langevin: Exploit gradient information to generate
samples far from θ(t−1) having high posterior density
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samples far from θ(t−1) having high posterior density
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MCMC & Computational bottlenecks

j Time per iteration increases with # of parameters/unknowns

j Can also increase with the sample size n

j Due to the cost of sampling proposal & calculating acceptance
probability

j Similar costs occur in most optimization algorithms!

j For example, the computational bottleneck may be attributable
to gradient evaluations
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MCMC - A potential 2nd bottleneck

j MCMC does not produce independent samples from πn(θ)

j Draws are auto-correlated - as level of correlation increases,
information provided by each sample decreases

j “Slowly mixing” Markov chains have highly autocorrelated draws

j A well designed MCMC algorithm with a good proposal should
ideally exhibit rapid convergence & mixing

j Otherwise the Monte Carlo (MC) error in posterior summaries
may be high
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MCMC: Causes of scalability problems

j Often mixing gets worse as problem size grows (e.g. data
dimension)

j Hence, in some cases we have a double bottleneck - worsening
mixing & time/iteration

j Also MCMC is an inherently serial algorithm, so naive
implementation may require storing & processing all data on
one machine

j Limits ease at which divide-and-conquer strategies can be
applied.

j For the above reasons, it is common to simply state that MCMC
is not scalable
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MCMC: A bright future

j Each of the above problems can be addressed & there is an
emerging rich literature!

j This is even given that orders of magnitude more researchers
work on developing scalable optimization algorithms

j For an MCMC algorithm to be scalable, MC error in posterior
summaries based on running for time τ should not explode with
dimensionality

j Some popular algorithms have been shown to not be scalable
while others can be made scalable

j I’m going to highlight some relevant relevant work starting by
focusing on big n problems & then transitioning to big p
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Outline

Motivation & background

Big n

High-dimensional data (big p)

Big n 15



Some Solutions

j Embarrassingly parallel (EP) MCMC: run MCMC in parallel for
different subsets of data & combine.

j Approximate MCMC: Approximate expensive to evaluate
transition kernels.

j C-Bayes: Condition on observed data being in small
neighborhood of data drawn from assumed model [ROBUST]

j Hybrid algorithms: run MCMC for a subset of the parameters
& use a fast estimate for the others.
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Embarrassingly parallel MCMC

j Divide large sample size n data set into many smaller data sets
stored on different machines

j Draw posterior samples for each subset posterior in parallel
j ‘Magically’ combine the results quickly & simply
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Toy Example: Logistic Regression
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MCMC
Subset Posterior
WASP

β1

β 2

pr(yi = 1|xi 1, . . . , xi p ,θ) =
exp

(∑p
j=1 xi jβ j

)
1+exp

(∑p
j=1 xi jβ j

) .

j Subset posteriors: ‘noisy’ approximations of full data posterior.

j ‘Averaging’ of subset posteriors reduces this ‘noise’ & leads to
an accurate posterior approximation.
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Stochastic Approximation

j Full data posterior density of inid data Y (n)

πn(θ | Y (n)) =
∏n

i=1 pi (yi | θ)π(θ)∫
Θ

∏n
i=1 pi (yi | θ)π(θ)dθ

.

j Divide full data Y (n) into k subsets of size m:
Y (n) = (Y[1], . . . ,Y[ j ], . . . ,Y[k]).

j Subset posterior density for j th data subset

π
γ
m(θ | Y[ j ]) =

∏
i∈[ j ](pi (yi | θ))γπ(θ)∫

Θ

∏
i∈[ j ](pi (yi | θ))γπ(θ)dθ

.

j γ=O(k) - chosen to minimize approximation error
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Barycenter in Metric Spaces
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Barycenter in Metric Spaces
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WAsserstein barycenter of Subset Posteriors (WASP)

Srivastava, Li & Dunson (2015)

j 2-Wasserstein distance between µ,ν ∈P 2(Θ)

W2(µ,ν) = inf
{(
E[d 2(X ,Y )]

) 1
2 : law(X ) =µ, law(Y ) = ν

}
.

j Π
γ
m(· | Y[ j ]) for j = 1, . . . ,k are combined through WASP

Π
γ
n(· | Y (n)) = argmin

Π∈P 2(Θ)

1

k

k∑
j=1

W 2
2 (Π,Πγm(· | Y[ j ])). [Agueh & Carlier (2011)]

j Plugging in Π̂γm(· | Y[ j ]) for j = 1, . . . ,k, a linear program (LP) can
be used for fast estimation of an atomic approximation!
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LP Estimation of WASP

j Minimizing Wasserstein is solution to a discrete optimal
transport problem

j Let µ=∑J1
j=1 a jδθ1 j , ν=

∑J2

l=1 blδθ2l & M12 ∈ℜJ1×J2 = matrix of
square differences in atoms {θ1 j }, {θ2l }.

j Optimal transport polytope: T (a,b) = set of doubly stochastic
matrices w/ row sums a & column sums b

j Objective is to find T ∈T (a,b) minimizing tr(TT M12)

j For WASP, generalize to multimargin optimal transport problem
- entropy smoothing has been used previously

j We can avoid such smoothing & use sparse LP solvers -
neglible computation cost compared to sampling
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WASP: Theorems

Theorem (Subset Posteriors)
Under “usual” regularity conditions, there exists a constant C1

independent of subset posteriors, such that for large m,

E
P [ j ]
θ0

W 2
2

{
Π
γ
m(· | Y[ j ]),δθ0 (·)}≤C1

(
log2 m

m

) 1
α

j = 1, . . . ,k,

Theorem (WASP)
Under “usual” regularity conditions and for large m,

W2

{
Π
γ
n(· | Y (n)),δθ0 (·)

}
=OP (n)

θ0

√
log2/αm

km1/α

 .
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Simple & Fast Posterior Interval Estimation (PIE)

Li, Srivastava & Dunson (2017)

j Usually report point & interval estimates for different 1-d
functionals - multidimensional posterior difficult to interpret

j WASP has explicit relationship with subset posteriors in 1-d

j Quantiles of WASP are simple averages of quantiles of subset
posteriors

j Leads to a super trivial algorithm - run MCMC for each subset &
average quantiles - reminiscent of bag of little bootstraps

j Strong theory showing accuracy of the resulting approximation

j Can implement in STAN, which allows powered likelihoods
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Theory on PIE/1-d WASP

j We show 1-d WASP Πn(ξ|Y (n)) is highly accurate approximation
to exact posterior Πn(ξ|Y (n))

j As subset sample size m increases, W2 distance between them
decreases at faster than parametric rate op (n−1/2)

j Theorem allows k =O(nc ) and m =O(n1−c ) for any c ∈ (0,1), so
m can increase very slowly relative to k (recall n = mk)

j Their biases, variances, quantiles only differ in high orders of
the total sample size

j Conditions: standard, mild conditions on likelihood + prior finite
2nd moment & uniform integrabiity of subset posteriors
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Results

j We have implemented for rich variety of data & models

j Logistic & linear random effects models, mixture models, matrix
& tensor factorizations, Gaussian process regression

j Nonparametric models, dependence, hierarchical models, etc.

j We compare to long runs of MCMC (when feasible) & VB

j WASP/PIE is much faster than MCMC & highly accurate

j Carefully designed VB implementations often do very well
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aMCMC Johndrow, Mattingly, Mukherjee & Dunson (2015)

j Different way to speed up MCMC - replace expensive transition
kernels with approximations

j For example, approximate a conditional distribution in Gibbs
sampler with a Gaussian or using a subsample of data

j Can potentially vastly speed up MCMC sampling in
high-dimensional settings

j Original MCMC sampler converges to a stationary distribution
corresponding to the exact posterior

j Not clear what happens when we start substituting in
approximations - may diverge etc
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aMCMC Overview

j aMCMC is used routinely - there is an increasing rich literature
on algorithms

j Theory: guarantees can be used to target design of algorithms

j Define ‘exact’ MCMC algorithm, which is computationally
intractable but has good mixing

j ‘exact’ chain converges to stationary distribution corresponding
to exact posterior

j Approximate kernel in exact chain with more computationally
tractable alternative
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Sketch of theory

j Define sε = τ1(P )/τ1(Pε) = computational speed-up, τ1(P ) =
time for one step with transition kernel P

j Interest: optimizing computational time-accuracy tradeoff for
estimators of Π f = ∫

Θ f (θ)Π(dθ|x)

j We provide tight, finite sample bounds on L2 error

j aMCMC estimators win for low computational budgets but have
asymptotic bias

j Often larger approximation error → larger sε & rougher
approximations are better when speed super important

Big n 29



Sketch of theory

j Define sε = τ1(P )/τ1(Pε) = computational speed-up, τ1(P ) =
time for one step with transition kernel P

j Interest: optimizing computational time-accuracy tradeoff for
estimators of Π f = ∫

Θ f (θ)Π(dθ|x)

j We provide tight, finite sample bounds on L2 error

j aMCMC estimators win for low computational budgets but have
asymptotic bias

j Often larger approximation error → larger sε & rougher
approximations are better when speed super important

Big n 29



Sketch of theory

j Define sε = τ1(P )/τ1(Pε) = computational speed-up, τ1(P ) =
time for one step with transition kernel P

j Interest: optimizing computational time-accuracy tradeoff for
estimators of Π f = ∫

Θ f (θ)Π(dθ|x)

j We provide tight, finite sample bounds on L2 error

j aMCMC estimators win for low computational budgets but have
asymptotic bias

j Often larger approximation error → larger sε & rougher
approximations are better when speed super important

Big n 29



Sketch of theory

j Define sε = τ1(P )/τ1(Pε) = computational speed-up, τ1(P ) =
time for one step with transition kernel P

j Interest: optimizing computational time-accuracy tradeoff for
estimators of Π f = ∫

Θ f (θ)Π(dθ|x)

j We provide tight, finite sample bounds on L2 error

j aMCMC estimators win for low computational budgets but have
asymptotic bias

j Often larger approximation error → larger sε & rougher
approximations are better when speed super important

Big n 29



Sketch of theory

j Define sε = τ1(P )/τ1(Pε) = computational speed-up, τ1(P ) =
time for one step with transition kernel P

j Interest: optimizing computational time-accuracy tradeoff for
estimators of Π f = ∫

Θ f (θ)Π(dθ|x)

j We provide tight, finite sample bounds on L2 error

j aMCMC estimators win for low computational budgets but have
asymptotic bias

j Often larger approximation error → larger sε & rougher
approximations are better when speed super important

Big n 29



Ex 1: Approximations using subsets

j Replace the full data likelihood with

Lε(x | θ) =
(∏

i∈V
L(xi | θ)

)N /|V |
,

for randomly chosen subset V ⊂ {1, . . . ,n}.

j Applied to Pólya-Gamma data augmentation for logistic
regression

j Different V at each iteration – trivial modification to Gibbs
j Assumptions hold with high probability for subsets > minimal

size (wrt distribution of subsets, data & kernel).
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Application to SUSY dataset

j n = 5,000,000 (0.5 million test), binary outcome & 18 continuous
covariates

j Considered subsets sizes ranging from |V | = 1,000 to 4,500,000

j Considered different losses as function of |V |
j Rate at which loss → 0 with ε heavily dependent on loss

j For small computational budget & focus on posterior mean
estimation, small subsets preferred

j As budget increases & loss focused more on tails (e.g., for
interval estimation), optimal |V | increases
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Application 2: Mixture models & tensor factorizations

j We also considered a nonparametric Bayes model:

pr(yi 1 = c1, . . . , yi p = cp ) =
k∑

h=1
λh

p∏
j=1

ψ
( j )
hc j

,

a very useful model for multivariate categorical data

j Dunson & Xing (2009) - a data augmentation Gibbs sampler
j Sampling latent classes computationally prohibitive for huge n

j Use adaptive Gaussian approximation - avoid sampling
individual latent classes

j We have shown Assumptions 1-2, Assumption 2 result more
general than this setting

j Improved computation performance for large n
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Application 3: Low rank approximation to GP

j Gaussian process regression, yi = f (xi )+ηi , ηi ∼ N (0,σ2)

j f ∼GP prior with covariance τ2 exp(−φ||x1 −x2||2)

j Discrete-uniform on φ & gamma priors on τ−2,σ−2

j Marginal MCMC sampler updates φ,τ−2,σ−2

j We show Assumption 1 holds under mild regularity conditions
on “truth”, Assumption 2 holds for partial rank-r eigen
approximation to Σ

j Less accurate approximations clearly superior in practice for
small computational budget
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Some interim comments

j EP-MCMC & aMCMC can be used in many-many settings to
vastly speed up computation for big n

j Here, I just illustrated some of the possible algorithms - there is
an increasingly huge literature on many other approaches

j aMCMC can just as easily be used in high-dimensional (large p)
problems

j It is also certainly possible to combine EP-MCMC + aMCMC

j Robustness: one topic we haven’t discussed yet is robustness
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Robustness in big data

j In standard Bayesian inference, it is assumed that the model is
correct.

j Small violations of this assumption sometimes have a large
impact, particularly in large datasets

j “All models are wrong,” & ability to carefully check modeling
assumptions decreases for big/complex data

j Appealing to tweak Bayesian paradigm to be inherently more
robust

Big n 35



Robustness in big data

j In standard Bayesian inference, it is assumed that the model is
correct.

j Small violations of this assumption sometimes have a large
impact, particularly in large datasets

j “All models are wrong,” & ability to carefully check modeling
assumptions decreases for big/complex data

j Appealing to tweak Bayesian paradigm to be inherently more
robust

Big n 35



Robustness in big data

j In standard Bayesian inference, it is assumed that the model is
correct.

j Small violations of this assumption sometimes have a large
impact, particularly in large datasets

j “All models are wrong,” & ability to carefully check modeling
assumptions decreases for big/complex data

j Appealing to tweak Bayesian paradigm to be inherently more
robust

Big n 35



Robustness in big data

j In standard Bayesian inference, it is assumed that the model is
correct.

j Small violations of this assumption sometimes have a large
impact, particularly in large datasets

j “All models are wrong,” & ability to carefully check modeling
assumptions decreases for big/complex data

j Appealing to tweak Bayesian paradigm to be inherently more
robust

Big n 35



Example: Perturbed mixture of Gaussians

j Mixtures are often used for clustering.

j But if the data distribution is not exactly a mixture from the
assumed family, the posterior will tend to introduce more & more
clusters as n grows, in order to fit the data.

j As a result, interpretability of clusters may break down.
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Example: Flow cytometry clustering

j Each sample has 3 to 20-dim measurements on 10K’s of cells.

j Manual clustering is time-consuming and subjective.
j Multivariate Gaussian mixture yields too many clusters.
j Example: GvHD data from FLOWCAP-I.
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Wait, if the model is wrong, why not just fix it?

j This is often impractical for a number of reasons.

Z insufficient insight into the data generating process
Z time and effort to design model + algorithms, and develop theory
Z slower and more complicated to do inference
Z complex models are less likely to be used in practice

j Further, a simple model may be more appropriate, even if
wrong.

Z If there is a lack of fit, it may be due to contamination.
Z Many models are idealizations that are known to be inexact, but

have interpretable parameters that provide insight into the
questions of interest.

There are many reasons to prefer simple, interpretable, efficient
models. But we need a way to do inference that is robust to
misspecification.
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Coarsened posterior - Miller & Dunson (2018)

j Assume a model {Pθ : θ ∈Θ} and a prior π(θ).

j Suppose θI ∈Θ represents the idealized distribution of the data.

The interpretation here is that θI is the “true” state of nature about
which one is interested in making inferences.

j Suppose X1, . . . , Xn i.i.d. ∼ PθI are unobserved idealized data.
j However, the observed data x1, . . . , xn are actually a slightly

corrupted version of X1, . . . , Xn in the sense that
d(P̂X1:n , P̂x1:n ) < R for some statistical distance d(·, ·).
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Coarsened posterior

j If there were no corruption, then we should use the standard
posterior

π(θ | X1:n = x1:n).

j However, due to the corruption this would clearly be incorrect.
j Instead, a natural Bayesian approach would be to condition on

what is known, giving us the coarsened posterior or c-posterior,

π(θ | d(P̂X1:n , P̂x1:n ) < R).

j Since R may be difficult to choose a priori, put a prior on it:
R ∼ H .

j More generally, consider

π
(
θ | dn(X1:n , x1:n) < R

)
where dn(X1:n , x1:n) ≥ 0 is some measure of the discrepancy
between X1:n and x1:n .
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Relative entropy c-posterior ≈ Power posterior

j There are many possible choices of discrepancy but relative
entropy works out exceptionally nicely.

j Suppose dn(X1:n , x1:n) is a consistent estimator of D(po‖pθ)

when Xi
i i d∼ pθ and xi

i i d∼ po .

j When R ∼ exp(α), we have the power posterior approximation,

π
(
θ |dn(X1:n , x1:n) < R

) ∝ π(θ)
n∏

i=1
pθ(xi )ζn

where ζn =α/(α+n).
j The power posterior enables inference using standard

techniques:

Z Analytical solutions in the case of conjugate priors
Z MCMC is also straightforward
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Toy example: Bernoulli trials

j Suppose H0 : θ = 0.5 is true; e.g, heads & tails are equally likely
in repeated coin flips

j But x1, . . . , xn are corrupted and behave like Bernoulli(0.51)
samples.

j The c-posterior is robust to this, but the standard posterior is
not.
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Mixture models

j Model: X1, . . . , Xn |w ,ϕ i.i.d. ∼∑K
i=1 wi fϕi (x)

j Prior: w ∼ Dirichlet(γ1, . . . ,γK ) and ϕ1, . . . ,ϕK
i i d∼ H .

j c-Posterior is approximated as

π
(
w ,ϕ |dn(X1:n , x1:n) < R

)∝π(w ,ϕ)
n∏

j=1

( K∑
i=1

wi fϕi (x j )
)ζn

where ζn =α/(α+n).

j A straightforward MCMC algorithm can be used for computation

j Scales well to large datasets

j EP-MCMC, a-MCMC etc can be used to enhance scalability
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j=1

( K∑
i=1

wi fϕi (x j )
)ζn

where ζn =α/(α+n).

j A straightforward MCMC algorithm can be used for computation

j Scales well to large datasets

j EP-MCMC, a-MCMC etc can be used to enhance scalability
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Example: Perturbed mixture of Gaussians
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Example: Perturbed mixture of Gaussians
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Results: Flow cytometry clustering

Clustering on test datasets closely matches manual ground truth.
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Results: Flow cytometry clustering

j Clustering on test datasets closely matches manual ground
truth.

j Use F-measure to quantify similarity of partitions A and B:

F (A ,B) = ∑
A∈A

|A|
N

max
B∈B

2|A∩B |
|A|+ |B | .
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c-Bayes discussion

j c-Bayes provides a framework for improving robustness to
model misspecification

j Particularly useful when interest is in model-based inferences &
sample size n is large

j If we just want a black box for prediction may as well let the
model grow (unnecessarily) in complexity with n

j c-Bayes can be implemented with a particular power posterior

j All the scalable MCMC tricks developed for regular posteriors
can be used directly

j Also provides a motivation for doing Bayesian inferences based
on subsamples
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Hybrid high-dimensional density estimation

Ye, Canale & Dunson (2016, AISTATS)

j yi = (yi 1, . . . , yi p )T ∼ f with p large & f an unknown density

j Potentially use Dirichlet process mixtures of factor models

j Approach doesn’t scale well at all with p

j Instead use hybrid of Gibbs sampling & fast multiscale SVD

j Scalable, excellent mixing & empirical/predictive performance
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Outline

Motivation & background

Big n

High-dimensional data (big p)
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Scaling Bayes to high-dimensional data

j Thus far we have focused on solving computational &
robustness problems arising in large n

j In many ways these problems are easier to deal with then
issues with high-dimensional/complex data

j For example, in biomedical studies we routinely measure HUGE
numbers of features/study subjects

j Genomics, precision medicine, neuroimaging, etc

j We have very few labeled data relative to data dimensionality p

j We also don’t want a black box for prediction but want to do
scientific inferences

j Bayes for big p is a huge topic - I’ll just provide some vignettes
to give a flavor
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Variable/feature selection in large p regression

j Huge focus in sciences on variable selection

j For example, select the genetic variants x j associated with a
response (phenotype) y

j Sample size n is modest & # genetic variants p is huge

j Large p, small n problem

j Huge literature for dealing with this problem
j Two main approaches:

1. Independent Screening
2. Penalized estimation/shrinkage
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Independent Screening

j Test for an association between two variables at a time (e.g, a
phenotype & a SNP)

j Repeat this for all possible pairs, getting a large number of
p-values

j Choose p-value threshold controlling False Discovery Rate
(FDR) - eg Benjamini-Hochberg (BH)

j Get a list of discoveries & hopefully run follow-up studies to
verify
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Independent Screening - Continued

j Very appealing in its simplicity

j Very widely used

j Many false positives & negatives; for sparse data false
negatives huge problem

j Just considering a pair of variables at a time leads to limited
insights
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Problems with classical approaches

j Consider the canonical linear regression problem:

yi = x ′
iβ+εi , εi ∼ N (0,σ2),

where xi = (xi 1, . . . , xi p )′ & β= (β1, . . . ,βp )′

j The classical approach is to estimate β using MLE which
reduces to the least squares estimator β̂= (X ′X )−1X ′y

j Unfortunately as p increases OR xi j s become more correlated
OR more sparse, the variance of β̂ blows up

j For p > n a unique MLE doesn’t exist
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Including prior information

j We need to include some sort of outside or prior information

j In a Bayesian approach, we choose a prior probability
distribution π(β) characterizing our uncertainty in β prior to
observing the current data

j Then, we would use Bayes rule to update the prior with
information in the likelihood:

π(β|Y , X ) = π(β)L(Y |X ,β)∫
π(β)L(Y |X ,β)dβ

= π(β)L(Y |X ,β)

L(Y |X )
,

where L(Y |X ,β) is the likelihood & L(Y |X ) is the marginal
likelihood
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Bayes in normal linear regression

j Suppose π(β) = Np (0,Σ0) & we have a normal linear regression
model

j Then, the posterior distribution of β has a simple form as

π(β|Y , X ) = Np (β̃,Vβ)

j Posterior covariance Vβ = (Σ−1
0 +σ−2X ′X )−1 combines the two

sources of information

j The posterior mean is β̃= (σ2Σ−1
0 +X ′X )−1X ′Y , which is a

weighted average of 0 and β̂= (X ′X )−1X ′Y .
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Penalized estimation

j We can get the same estimator for β by solving:

β̃ = argmin
β

n∑
i=1

(yi −x ′
iβ)2 +λ

p∑
j=1

β2
j

= argmin
β

||Y −Xβ||22 +λ||β||22.

j Known as ridge or L2 penalized regression

j Dual interpretation as a Bayesian estimator under a Gaussian
prior centered at zero & a least squares estimator with a penalty
on large coefficients

j Such estimators introduce some bias while reducing the
variance a lot to improve mean square error
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L1 - Lasso sparse estimation

j The above penalized loss function can be generalized as

β̃= argmin
β

||Y −Xβ||22 +pλ(β),

where pλ(β) is a penalty term - L2 in the case discussed above

j Another very common penalty is L1 - penalizing the sum of
absolute values |β j |

j Lasso & the resulting estimator has a Bayesian interpretation
under a double exponential (Laplace) prior

j β̃ is sparse & contains exact zeros values
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A proliferation of penalties & priors

j There is a HUGE literature proposing many different penalties

j Adaptive Lasso, fused Lasso, elastic net, etc etc

j In general, methods only produce a sparse point estimate & are
dangerous scientifically

j Many errors in interpreting the zero vs non-zero elements

j Parallel Bayesian literature on shrinkage priors - horseshoe,
generalized double Pareto, Dirichlet-Laplace, etc
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Bayesian shrinkage priors

j Appropriate prior π(β) for the high-dimensional vector of
coefficients?

j Most commonly local-global scale mixture of Gaussians,

β j
i i d∼ N (0,ψ jλ), ψ j ∼ f , λ∼ g ,

ψ j =local scale, λ = global scale
j Choose λ≈ 0 & ψ j to have many small values with some large
j Different choices of f , g lead to different priors in the literature -

Bayesian Lasso is a poor choice, as horseshoe, gDP, DL etc
have much better theoretical & practical performance

j Literature on scalable computation using MCMC - e.g,
Johndrow et al arXiv:1705.00841

j Datta & Dunson (20)16, Biometrika) - develop such approaches
for huge dimensional sparse count data arising in genomics

High-dimensional data (big p) 60



Bayesian shrinkage priors

j Appropriate prior π(β) for the high-dimensional vector of
coefficients?

j Most commonly local-global scale mixture of Gaussians,

β j
i i d∼ N (0,ψ jλ), ψ j ∼ f , λ∼ g ,

ψ j =local scale, λ = global scale

j Choose λ≈ 0 & ψ j to have many small values with some large
j Different choices of f , g lead to different priors in the literature -

Bayesian Lasso is a poor choice, as horseshoe, gDP, DL etc
have much better theoretical & practical performance

j Literature on scalable computation using MCMC - e.g,
Johndrow et al arXiv:1705.00841

j Datta & Dunson (20)16, Biometrika) - develop such approaches
for huge dimensional sparse count data arising in genomics

High-dimensional data (big p) 60



Bayesian shrinkage priors

j Appropriate prior π(β) for the high-dimensional vector of
coefficients?

j Most commonly local-global scale mixture of Gaussians,

β j
i i d∼ N (0,ψ jλ), ψ j ∼ f , λ∼ g ,

ψ j =local scale, λ = global scale
j Choose λ≈ 0 & ψ j to have many small values with some large

j Different choices of f , g lead to different priors in the literature -
Bayesian Lasso is a poor choice, as horseshoe, gDP, DL etc
have much better theoretical & practical performance

j Literature on scalable computation using MCMC - e.g,
Johndrow et al arXiv:1705.00841

j Datta & Dunson (20)16, Biometrika) - develop such approaches
for huge dimensional sparse count data arising in genomics

High-dimensional data (big p) 60



Bayesian shrinkage priors

j Appropriate prior π(β) for the high-dimensional vector of
coefficients?

j Most commonly local-global scale mixture of Gaussians,

β j
i i d∼ N (0,ψ jλ), ψ j ∼ f , λ∼ g ,

ψ j =local scale, λ = global scale
j Choose λ≈ 0 & ψ j to have many small values with some large
j Different choices of f , g lead to different priors in the literature -

Bayesian Lasso is a poor choice, as horseshoe, gDP, DL etc
have much better theoretical & practical performance

j Literature on scalable computation using MCMC - e.g,
Johndrow et al arXiv:1705.00841

j Datta & Dunson (20)16, Biometrika) - develop such approaches
for huge dimensional sparse count data arising in genomics

High-dimensional data (big p) 60



Bayesian shrinkage priors

j Appropriate prior π(β) for the high-dimensional vector of
coefficients?

j Most commonly local-global scale mixture of Gaussians,

β j
i i d∼ N (0,ψ jλ), ψ j ∼ f , λ∼ g ,

ψ j =local scale, λ = global scale
j Choose λ≈ 0 & ψ j to have many small values with some large
j Different choices of f , g lead to different priors in the literature -

Bayesian Lasso is a poor choice, as horseshoe, gDP, DL etc
have much better theoretical & practical performance

j Literature on scalable computation using MCMC - e.g,
Johndrow et al arXiv:1705.00841

j Datta & Dunson (20)16, Biometrika) - develop such approaches
for huge dimensional sparse count data arising in genomics

High-dimensional data (big p) 60



Bayesian shrinkage priors

j Appropriate prior π(β) for the high-dimensional vector of
coefficients?

j Most commonly local-global scale mixture of Gaussians,

β j
i i d∼ N (0,ψ jλ), ψ j ∼ f , λ∼ g ,

ψ j =local scale, λ = global scale
j Choose λ≈ 0 & ψ j to have many small values with some large
j Different choices of f , g lead to different priors in the literature -

Bayesian Lasso is a poor choice, as horseshoe, gDP, DL etc
have much better theoretical & practical performance

j Literature on scalable computation using MCMC - e.g,
Johndrow et al arXiv:1705.00841

j Datta & Dunson (20)16, Biometrika) - develop such approaches
for huge dimensional sparse count data arising in genomics

High-dimensional data (big p) 60



Features of a Bayesian approach

j Bayesian approach provides a full posterior π(β|Y , X )
characterizing uncertainty instead of just a sparse point
estimate β̂

j By using MCMC, we can easily get credible bands (Bayesian
confidence intervals) for not only the β j ’s but also for any
functional of interest

j Relatively straightforward to incorporate extensions to allow
hierarchical dependence structures, multivariate responses,
missing data, etc

j However, there is a need for approaches that are

1. More robust to parametric assumptions,
2. easily computationally scalable to huge datasets
3. provide a way to deal with intractable p À n problems
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Application 1: DNA methylation arrays
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j Focus: screening for differentially methylated CpG sites

j High-throughput arrays are routinely used - eg., Illumina Human
Methylation450 Beadchip

j Measurements in [0,1] interval, ranging from no methylation to
fully methylated

j Representative data from the Cancer Genome Atlas
j Clearly distributions exhibit multimodality & skewness
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Comments
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j We observe data like this at a HUGE number of CpG sites

j Many distributions share common attributes - modes etc
j Can accurately characterize the methylation densities using a

kernel mixture model
j Key idea: use the same kernels across the sites & groups but

allow the weights to vary
j SHARed Kernel (SHARK) method (Lock & Dunson, 2015)
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Shark - some details
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j The methylation density at site j in group g is f j g :

f j g (y) =
k∑

h=1
π j g hK (y ;θh)

j π j g = (π j g 1, . . . ,π j g k )′ are weights specific to j , g
j K (y ;θh) is a shared kernel (truncated normal in this case)
j We estimate the above kernels in a first stage relying on a

subsample of 500 sites - only need 9 kernels

High-dimensional data (big p) 64
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k∑

h=1
π j g hK (y ;θh)

j π j g = (π j g 1, . . . ,π j g k )′ are weights specific to j , g
j K (y ;θh) is a shared kernel (truncated normal in this case)
j We estimate the above kernels in a first stage relying on a

subsample of 500 sites - only need 9 kernels
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j We put a simple hierarchical prior on π j g - Dirichlet in each
group

j Prior probability random CpG site is differentially methylated
given a beta hyperprior

j Automatically adjusts for multiple testing error, controlling FDR
j Computation - very fast Gibbs & parallelizable Gibbs sampler
j Theory support, including under misspecification
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Results for Cancer Genome Atlas Data
Histogram of pr(H0m|X)
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j Illustrate using n = 597 breast cancer samples & 21,986 CpG
sites from TGGA

j Focus on testing difference between basal-like (112) and not
(485) at each site

j Global proportion of no difference was 0.821

j Distribution of posterior probabilities of H0m shown above
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Discussion & Comparisons
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t-Test
RDDP dTV test
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j Of 2117 CpG sites with pr(H0m) < 0.01, 1256 have a significant
negative association with gene expression (p < 0.01 spearman’s
rank correlation)

j Methylation gives potential mechanistic explanation for
differences in gene transcription levels

j We compared power of our approach with alternatives

High-dimensional data (big p) 67



Discussion & Comparisons

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

False positive rate

P
ro

po
rti

on
 o

f C
pG

 s
ite

s

Shared kernel test (learned P0)
Anderson Darling test (FDR)
Shared kernel test (P0 = 0.5)
Anderson-Darling test
co-OPT
Wilcoxon rank test
t-Test
RDDP dTV test
PT test

j Of 2117 CpG sites with pr(H0m) < 0.01, 1256 have a significant
negative association with gene expression (p < 0.01 spearman’s
rank correlation)

j Methylation gives potential mechanistic explanation for
differences in gene transcription levels

j We compared power of our approach with alternatives

High-dimensional data (big p) 67



Discussion & Comparisons

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

False positive rate

P
ro

po
rti

on
 o

f C
pG

 s
ite

s

Shared kernel test (learned P0)
Anderson Darling test (FDR)
Shared kernel test (P0 = 0.5)
Anderson-Darling test
co-OPT
Wilcoxon rank test
t-Test
RDDP dTV test
PT test

j Of 2117 CpG sites with pr(H0m) < 0.01, 1256 have a significant
negative association with gene expression (p < 0.01 spearman’s
rank correlation)

j Methylation gives potential mechanistic explanation for
differences in gene transcription levels

j We compared power of our approach with alternatives
High-dimensional data (big p) 67



Shared kernel testing for complex phenotypes

j Shared kernel approach can be applied to very complex
phenotypes

j As long as a mixture model can be defined for the phenotype
distribution under one condition

j I’ll illustrate briefly using brain connectome phenotypes

j For each individual i , we extract a structural connectome Xi

from MRI data

j Then, Xi [u,v] = 1 if there is any connection between regions u &
v for individual i , and Xi [u,v] = 0 otherwise
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A nonparametric model of variation in brain networks
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Low creativity subject

j Kernel for characterizing variation in brain network data across
individuals: Xi ∼ P , P =?.

j For each brain region (r ) & component (h), assign an
individual-specific score ηi h[r ]

j Characterize variation among individuals with:

logit{pr(Xi [u,v] = 1)} =µ[u,v]+
K∑

h=1
λi hηi h[u]ηi h[v], θi = {λi h ,ηi r } ∼Q.

j Using Bayesian nonparametrics, allow Q (& P ) to be unknown
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Bayesian inferences

j Based on this framework, we can cluster individuals in terms of
their brain structure

j We can also test for relationships between brain structure &
traits/genotype

j Just allow the weights in our mixture model to vary with
traits/genotypes with fixed kernels

j Allows scientific inference of global & local group differences in
network structures with traits

j Adjusts for multiple testing reducing false positives
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Application to creativity
Results from local testing

j Apply model to brain networks of 36
subjects (19 with high creativity, 17
with low creativity—measured via
CCI).

j p̂r(H1 | data) = 0.995.

j Highly creative individuals have
significantly >
inter-hemispheric connections.

j Differences in frontal lobe consistent
with recent fMRI studies analyzing
regional activity in isolation.
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Modularization

j Idea: don’t allow for all the dependencies implied by the joint
Bayesian model

j Cutting dependence useful for computational scalability &
robustness to model misspecification

j As an example, suppose we have a phenotype yi and SNPs
xi = (xi 1, . . . , xi p )′

j We want to screen for SNPs xi j that are significantly related
with yi in a nonparametric manner

j We also want to account for dependence in the many different
tests
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Modular Bayes screening (Chen & Dunson, 2018)

j Start with kernel mixture model for marginal distribution of yi :

f (y) =
k∑

h=1
πhK (y ;θh).

j This implies yi ∼K (θci ), pr(ci = h) =πh , with ci ∈ {1, . . . ,k} a
cluster index

j Run an MCMC algorithm to get samples of the unknown
parameters & cluster indices

j For each SNP, define a simple Bayesian test for association
between xi j & ci

j Include common parameters across these tests - eg, probability
of an association in a random SNP.

j Marginalize over MCMC samples of {ci } to take into account
uncertainty
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MOBS - comments

j Algorithm is very fast & scalable to huge p + trivially
parallelizable

j Has strong frequentist theoretical guarantees - comparable to
state-of-the-art

j Competitive with the state of the art in performance

j Particularly good at detecting complex distributional changes
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Application to cis-eQTL data

j Applied approach to GEUVADIS cis-eQTL data set

j Messenger RNA & microRNA on lymphoblastoid cell line
samples from 462 individuals in 1000 genomes

j 38 million Single Nucleotide Polymorphisms (SNPs)

j gene E2F2 (yi ) - key role in control of cell cycle & is multimodal

j 0.4% of pr(H0 j ) < 0.05 - picking up differences in distribution
other methods miss
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Discussion

j Brief intro to Bayesian methods for large p problems

j Highlighted some recent work using shared kernels &/or
modularization

j There is a very rich literature & increasing focus on scalability

j One important direction is to obtain methods for assessing when
we are attempting inferences on too fine of a scale for our data

j Ideally can then automatically coarsen the scale to answer
solvable questions - e.g., Peruzzi & Dunson (2018)
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Discussion

j Take home message: Bayes is scalable & MCMC is scalable

j But in big data & dimensionality problems we can’t necessarily
be naive & use off the shelf algorithms

j We need to think carefully about how to exploit parallel
processing & accurate approximations to reduce bottlenecks

j Also useful to take a step away from the fully Bayes framework
by using modularization, composite likelihoods, c-Bayes, etc

j Such generalized Bayes methods can have improved
computational performance & robustness
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