Scalable Bayesian Inference

David Dunson

Departments of Statistical Science & Mathematics, Duke University

December 3, 2018

Outline

Motivation & background

Big n

High-dimensional data (big p)

There is an increasingly immense literature focused on big data

- » There is an increasingly immense literature focused on big data
- Nost of the focus has been on optimization methods

- » There is an increasingly immense literature focused on big data
- Most of the focus has been on optimization methods
- Rapidly obtaining a point estimate even when sample size n & overall 'size' of data is immense

- There is an increasingly immense literature focused on big data
- Most of the focus has been on optimization methods
- Rapidly obtaining a point estimate even when sample size n & overall 'size' of data is immense
- Huge focus on specific settings e.g., linear regression, labeling images, etc

- There is an increasingly immense literature focused on big data
- Most of the focus has been on optimization methods
- Rapidly obtaining a point estimate even when sample size n & overall 'size' of data is immense
- Huge focus on specific settings e.g., linear regression, labeling images, etc
- Bandwagons: most people work on very similar problems, while critical open problems remain untouched

General probabilistic inference algorithms for complex data

- General probabilistic inference algorithms for complex data
- We would like to handle arbitrarily complex probability models

- General probabilistic inference algorithms for complex data
- We would like to handle arbitrarily complex probability models
- Algorithms scalable to huge data potentially using many computers

- General probabilistic inference algorithms for complex data
- We would like to handle arbitrarily complex probability models
- Algorithms scalable to huge data potentially using many computers

"I wish we hadn't learned probability 'cause I don't think our odds are good."

- General probabilistic inference algorithms for complex data
- We would like to handle arbitrarily complex probability models
- Algorithms scalable to huge data potentially using many computers

Accurate uncertainty quantification (UQ) is a critical issue

- General probabilistic inference algorithms for complex data
- We would like to handle arbitrarily complex probability models
- Algorithms scalable to huge data potentially using many computers
- Accurate uncertainty quantification (UQ) is a critical issue
- Robustness of inferences also crucial

 Bayesian methods offer an attractive general approach for modeling complex data

- Bayesian methods offer an attractive general approach for modeling complex data
- Choosing a prior $\pi(\theta)$ & likelihood $L(Y^{(n)}|\theta)$, the posterior is

$$\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta)d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}.$$

- Bayesian methods offer an attractive general approach for modeling complex data
- Choosing a prior $\pi(\theta)$ & likelihood $L(Y^{(n)}|\theta)$, the posterior is

$$\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta)d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}$$

• The posterior $\pi_n(\theta|Y^{(n)})$ characterizes uncertainty in the parameters, in any functional $f(\theta)$ of interest & in predictive distributions

- Bayesian methods offer an attractive general approach for modeling complex data
- Choosing a prior $\pi(\theta)$ & likelihood $L(Y^{(n)}|\theta)$, the posterior is

$$\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta)d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}$$

- The posterior $\pi_n(\theta|Y^{(n)})$ characterizes uncertainty in the parameters, in any functional $f(\theta)$ of interest & in predictive distributions
- Often θ is moderate to high-dimensional & the integral in denominator is intractable

- Bayesian methods offer an attractive general approach for modeling complex data
- ⇒ Choosing a prior $\pi(\theta)$ & likelihood $L(Y^{(n)}|\theta)$, the posterior is

$$\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta)d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}$$

- The posterior $\pi_n(\theta|Y^{(n)})$ characterizes uncertainty in the parameters, in any functional $f(\theta)$ of interest & in predictive distributions
- Often θ is moderate to high-dimensional & the integral in denominator is intractable
- Hence, in interesting models the posterior is not available analytically - what to do??

 In conjugate models, can express the posterior in simple form e.g, as a multivariate Gaussian

- In conjugate models, can express the posterior in simple form e.g, as a multivariate Gaussian
- In more complex settings, can approximate posterior using some tractable class of distributions

- In conjugate models, can express the posterior in simple form e.g, as a multivariate Gaussian
- In more complex settings, can approximate posterior using some tractable class of distributions
- Large sample Gaussian approximations:

 $\pi_n(\theta|Y^{(n)}) \approx N(\hat{\mu}_n, \Sigma_n)$

Bayesian central limit theorem (Bernstein von Mises)

- In conjugate models, can express the posterior in simple form e.g, as a multivariate Gaussian
- In more complex settings, can approximate posterior using some tractable class of distributions
- Large sample Gaussian approximations:

 $\pi_n(\theta|Y^{(n)}) \approx N(\hat{\mu}_n, \Sigma_n)$

Bayesian central limit theorem (Bernstein von Mises)

⇒ Relies on sample size *n* large relative to # parameters *p*, likelihood smooth & differentiable, true value θ_0 in interior of parameter space

- In conjugate models, can express the posterior in simple form e.g, as a multivariate Gaussian
- In more complex settings, can approximate posterior using some tractable class of distributions
- Large sample Gaussian approximations:

 $\pi_n(\theta|Y^{(n)}) \approx N(\hat{\mu}_n, \Sigma_n)$

Bayesian central limit theorem (Bernstein von Mises)

- Relies on sample size *n* large relative to # parameters *p*, likelihood smooth & differentiable, true value θ_0 in interior of parameter space
- Related class of approximations use a Laplace approximation to $\int \pi(\theta) L(Y^{(n)}|\theta) d\theta$

Solution As an alternative to Laplace/Gaussian approximations, we can define some approximating class $q(\theta)$

- As an alternative to Laplace/Gaussian approximations, we can define some approximating class $q(\theta)$
- *q*(θ) may be something like a product of exponential family distributions parameterized by ξ

- As an alternative to Laplace/Gaussian approximations, we can define some approximating class $q(\theta)$
- *q*(θ) may be something like a product of exponential family distributions parameterized by ξ
- We could think to define some discrepancy between $q(\theta)$ and $\pi_n(\theta) = \pi_n(\theta | Y^{(n)})$

- As an alternative to Laplace/Gaussian approximations, we can define some approximating class $q(\theta)$
- *q*(θ) may be something like a product of exponential family distributions parameterized by ξ
- We could think to define some discrepancy between $q(\theta)$ and $\pi_n(\theta) = \pi_n(\theta | Y^{(n)})$
- If we can optimize ξ to minimize discrepancy, resulting $\hat{q}(\theta)$ may give us a decent approximation

- As an alternative to Laplace/Gaussian approximations, we can define some approximating class $q(\theta)$
- *q*(θ) may be something like a product of exponential family distributions parameterized by ξ
- We could think to define some discrepancy between $q(\theta)$ and $\pi_n(\theta) = \pi_n(\theta | Y^{(n)})$
- If we can optimize ξ to minimize discrepancy, resulting $\hat{q}(\theta)$ may give us a decent approximation
- Basis of variational Bayes, expectation-propagation & related methods

ICML 2018 tutorial by Tamara Broderick <www.tamarabroderick.com>

- ICML 2018 tutorial by Tamara Broderick <www.tamarabroderick.com>
- Based on maximizing a lower bound discarding an intractable term in KL divergence

- ICML 2018 tutorial by Tamara Broderick
 www.tamarabroderick.com
- Based on maximizing a lower bound discarding an intractable term in KL divergence
- In general have no clue how accurate the approximation is

- ICML 2018 tutorial by Tamara Broderick <www.tamarabroderick.com>
- Based on maximizing a lower bound discarding an intractable term in KL divergence
- » In general have no clue how accurate the approximation is
- Often posterior uncertainty badly under-estimated, though there are some fix-ups; e.g., Giordano, Broderick & Jordan (2015)

- ICML 2018 tutorial by Tamara Broderick <www.tamarabroderick.com>
- Based on maximizing a lower bound discarding an intractable term in KL divergence
- » In general have no clue how accurate the approximation is
- Often posterior uncertainty badly under-estimated, though there are some fix-ups; e.g., Giordano, Broderick & Jordan (2015)
- Fix-ups improve the variance characterization in a local mode

- ICML 2018 tutorial by Tamara Broderick <www.tamarabroderick.com>
- Based on maximizing a lower bound discarding an intractable term in KL divergence
- » In general have no clue how accurate the approximation is
- Often posterior uncertainty badly under-estimated, though there are some fix-ups; e.g., Giordano, Broderick & Jordan (2015)
- Fix-ups improve the variance characterization in a local mode
- Recent article: "On statistical optimality of variational Bayes" Pati, Bhattacharya & Yang, arXiv:1712.08983.

- ICML 2018 tutorial by Tamara Broderick <www.tamarabroderick.com>
- Based on maximizing a lower bound discarding an intractable term in KL divergence
- » In general have no clue how accurate the approximation is
- Often posterior uncertainty badly under-estimated, though there are some fix-ups; e.g., Giordano, Broderick & Jordan (2015)
- Fix-ups improve the variance characterization in a local mode
- Recent article: "On statistical optimality of variational Bayes" Pati, Bhattacharya & Yang, arXiv:1712.08983.
- No theory on accuracy of UQ
Hence, accurate analytic approximations to the posterior have proven elusive outside of narrow settings

- Hence, accurate analytic approximations to the posterior have proven elusive outside of narrow settings
- Markov chain Monte Carlo (MCMC) & other posterior sampling algorithms provide an alternative

- Hence, accurate analytic approximations to the posterior have proven elusive outside of narrow settings
- Markov chain Monte Carlo (MCMC) & other posterior sampling algorithms provide an alternative
- MCMC: sequential algorithm to obtain correlated draws from the posterior:

$$\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta)d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}$$

- Hence, accurate analytic approximations to the posterior have proven elusive outside of narrow settings
- Markov chain Monte Carlo (MCMC) & other posterior sampling algorithms provide an alternative
- MCMC: sequential algorithm to obtain correlated draws from the posterior:

$$\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta)d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}$$

 MCMC bypasses need to approximate the marginal likelihood L(Y⁽ⁿ⁾)

- Hence, accurate analytic approximations to the posterior have proven elusive outside of narrow settings
- Markov chain Monte Carlo (MCMC) & other posterior sampling algorithms provide an alternative
- MCMC: sequential algorithm to obtain correlated draws from the posterior:

$$\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta)d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}$$

- MCMC bypasses need to approximate the marginal likelihood L(Y⁽ⁿ⁾)
- Often samples more useful then an analytic form for $\pi_n(\theta)$ anyway

- Hence, accurate analytic approximations to the posterior have proven elusive outside of narrow settings
- Markov chain Monte Carlo (MCMC) & other posterior sampling algorithms provide an alternative
- MCMC: sequential algorithm to obtain correlated draws from the posterior:

$$\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta)d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}$$

- MCMC bypasses need to approximate the marginal likelihood L(Y⁽ⁿ⁾)
- Often samples more useful then an analytic form for $\pi_n(\theta)$ anyway
- Can use samples to calculate a wide variety of posterior & predictive summaries of interest

WCMC-based summaries of the posterior for any functional $f(\theta)$

- \circledast MCMC-based summaries of the posterior for any functional $f(\theta)$
- As the number of samples T increases, these summaries become more accurate

- \circledast MCMC-based summaries of the posterior for any functional $f(\theta)$
- As the number of samples T increases, these summaries become more accurate
- MCMC constructs Markov chain with stationary distribution $\pi_n(\theta|Y^{(n)})$

- MCMC-based summaries of the posterior for any functional $f(\theta)$
- As the number of samples T increases, these summaries become more accurate
- MCMC constructs Markov chain with stationary distribution $\pi_n(\theta|Y^{(n)})$
- A transition kernel is carefully chosen & iterative sampling proceeds

- MCMC-based summaries of the posterior for any functional $f(\theta)$
- As the number of samples T increases, these summaries become more accurate
- MCMC constructs Markov chain with stationary distribution $\pi_n(\theta|Y^{(n)})$
- A transition kernel is carefully chosen & iterative sampling proceeds
- Most MCMC algorithms types of Metropolis-Hastings (MH):

- MCMC-based summaries of the posterior for any functional $f(\theta)$
- As the number of samples T increases, these summaries become more accurate
- MCMC constructs Markov chain with stationary distribution $\pi_n(\theta|Y^{(n)})$
- A transition kernel is carefully chosen & iterative sampling proceeds
- Most MCMC algorithms types of Metropolis-Hastings (MH):
 - 1. $\theta^* \sim g(\theta^{(t-1)})$ = sample a proposal ($\theta^{(t)}$ =sample at step *t*)

- MCMC-based summaries of the posterior for any functional $f(\theta)$
- As the number of samples T increases, these summaries become more accurate
- MCMC constructs Markov chain with stationary distribution $\pi_n(\theta|Y^{(n)})$
- A transition kernel is carefully chosen & iterative sampling proceeds
- Most MCMC algorithms types of Metropolis-Hastings (MH):
 - 1. $\theta^* \sim g(\theta^{(t-1)})$ = sample a proposal ($\theta^{(t)}$ =sample at step *t*)
 - 2. Accept proposal by letting $\theta^{(t)} = \theta^*$ with probability

$$\min\left\{1, \frac{\pi(\theta^*)L(Y^{(n)}|\theta^*)}{\pi(\theta^{(t-1)})L(Y^{(n)}|\theta^{(t-1)})} \frac{g(\theta^{(t-1)})}{g(\theta^*)}\right\}$$

Design of "efficient" MH algorithms involves choosing good proposals $g(\cdot)$

- Design of "efficient" MH algorithms involves choosing good proposals $g(\cdot)$
- g(·) can depend on the previous value of θ & on the data but not on further back samples - except in adaptive MH

- Design of "efficient" MH algorithms involves choosing good proposals g(·)
- Gibbs sampler: Letting $\theta = (\theta_1, \dots, \theta_p)'$ we draw subsets of θ from their exact conditional posterior distributions fixing the others

- Design of "efficient" MH algorithms involves choosing good proposals g(·)
- g(·) can depend on the previous value of θ & on the data but not on further back samples - except in adaptive MH
- Gibbs sampler: Letting $\theta = (\theta_1, \dots, \theta_p)'$ we draw subsets of θ from their exact conditional posterior distributions fixing the others
- Random walk: $g(\theta^{(t-1)})$ is a distribution centered on $\theta^{(t-1)}$ with a tunable covariance

- Design of "efficient" MH algorithms involves choosing good proposals g(·)
- Gibbs sampler: Letting $\theta = (\theta_1, \dots, \theta_p)'$ we draw subsets of θ from their exact conditional posterior distributions fixing the others
- <u>Random walk</u>: $g(θ^{(t-1)})$ is a distribution centered on $θ^{(t-1)}$ with a tunable covariance
- HMC/Langevin: Exploit gradient information to generate samples far from $\theta^{(t-1)}$ having high posterior density

Time per iteration increases with # of parameters/unknowns

- Time per iteration increases with # of parameters/unknowns
- \bullet Can also increase with the sample size n

- Time per iteration increases with # of parameters/unknowns
- \bullet Can also increase with the sample size n
- Due to the cost of sampling proposal & calculating acceptance probability

- Time per iteration increases with # of parameters/unknowns
- \bullet Can also increase with the sample size n
- Due to the cost of sampling proposal & calculating acceptance probability
- Similar costs occur in most optimization algorithms!

- Time per iteration increases with # of parameters/unknowns
- \bullet Can also increase with the sample size n
- Due to the cost of sampling proposal & calculating acceptance probability
- Similar costs occur in most optimization algorithms!
- For example, the computational bottleneck may be attributable to gradient evaluations

WCMC does not produce independent samples from $\pi_n(\theta)$

- MCMC does not produce independent samples from $\pi_n(\theta)$
- Draws are auto-correlated as level of correlation increases, information provided by each sample decreases

- MCMC does not produce independent samples from $\pi_n(\theta)$
- Draws are auto-correlated as level of correlation increases, information provided by each sample decreases
- Slowly mixing" Markov chains have highly autocorrelated draws

- MCMC does not produce independent samples from $\pi_n(\theta)$
- Draws are auto-correlated as level of correlation increases, information provided by each sample decreases
- Slowly mixing" Markov chains have highly autocorrelated draws
- A well designed MCMC algorithm with a good proposal should ideally exhibit rapid convergence & mixing

- MCMC does not produce independent samples from $\pi_n(\theta)$
- Draws are auto-correlated as level of correlation increases, information provided by each sample decreases
- Slowly mixing" Markov chains have highly autocorrelated draws
- A well designed MCMC algorithm with a good proposal should ideally exhibit rapid convergence & mixing
- Otherwise the Monte Carlo (MC) error in posterior summaries may be high

Often mixing gets worse as problem size grows (e.g. data dimension)

- Often mixing gets worse as problem size grows (e.g. data dimension)
- Hence, in some cases we have a double bottleneck worsening mixing & time/iteration

- Often mixing gets worse as problem size grows (e.g. data dimension)
- Hence, in some cases we have a double bottleneck worsening mixing & time/iteration
- Also MCMC is an inherently serial algorithm, so naive implementation may require storing & processing all data on one machine

- Often mixing gets worse as problem size grows (e.g. data dimension)
- Hence, in some cases we have a double bottleneck worsening mixing & time/iteration
- Also MCMC is an inherently serial algorithm, so naive implementation may require storing & processing all data on one machine
- Limits ease at which divide-and-conquer strategies can be applied.

- Often mixing gets worse as problem size grows (e.g. data dimension)
- Hence, in some cases we have a double bottleneck worsening mixing & time/iteration
- Also MCMC is an inherently serial algorithm, so naive implementation may require storing & processing all data on one machine
- Limits ease at which divide-and-conquer strategies can be applied.
- For the above reasons, it is common to simply state that MCMC is not scalable

MCMC: A bright future

Each of the above problems can be addressed & there is an emerging rich literature!

MCMC: A bright future

- Each of the above problems can be addressed & there is an emerging rich literature!
- This is even given that orders of magnitude more researchers work on developing scalable optimization algorithms

MCMC: A bright future

- Each of the above problems can be addressed & there is an emerging rich literature!
- This is even given that orders of magnitude more researchers work on developing scalable optimization algorithms
- For an MCMC algorithm to be scalable, MC error in posterior summaries based on running for time τ should not explode with dimensionality
MCMC: A bright future

- Each of the above problems can be addressed & there is an emerging rich literature!
- This is even given that orders of magnitude more researchers work on developing scalable optimization algorithms
- For an MCMC algorithm to be scalable, MC error in posterior summaries based on running for time τ should not explode with dimensionality
- Some popular algorithms have been shown to not be scalable while others can be made scalable

MCMC: A bright future

- Each of the above problems can be addressed & there is an emerging rich literature!
- This is even given that orders of magnitude more researchers work on developing scalable optimization algorithms
- For an MCMC algorithm to be scalable, MC error in posterior summaries based on running for time τ should not explode with dimensionality
- Some popular algorithms have been shown to not be scalable while others can be made scalable
- I'm going to highlight some relevant relevant work starting by focusing on big n problems & then transitioning to big p

Outline

Motivation & background

Big n

High-dimensional data (big p)

Embarrassingly parallel (EP) MCMC: run MCMC in parallel for different subsets of data & combine.

- Embarrassingly parallel (EP) MCMC: run MCMC in parallel for different subsets of data & combine.
- Approximate MCMC: Approximate expensive to evaluate transition kernels.

- Embarrassingly parallel (EP) MCMC: run MCMC in parallel for different subsets of data & combine.
- Approximate MCMC: Approximate expensive to evaluate transition kernels.
- C-Bayes: Condition on observed data being in small neighborhood of data drawn from assumed model [ROBUST]

- Embarrassingly parallel (EP) MCMC: run MCMC in parallel for different subsets of data & combine.
- Approximate MCMC: Approximate expensive to evaluate transition kernels.
- C-Bayes: Condition on observed data being in small neighborhood of data drawn from assumed model [ROBUST]
- Hybrid algorithms: run MCMC for a subset of the parameters & use a fast estimate for the others.

Embarrassingly parallel MCMC

Divide large sample size n data set into many smaller data sets stored on different machines

Embarrassingly parallel MCMC

- Divide large sample size n data set into many smaller data sets stored on different machines
- Draw posterior samples for each subset posterior in parallel

Embarrassingly parallel MCMC

- Divide large sample size n data set into many smaller data sets stored on different machines
- Draw posterior samples for each subset posterior in parallel
- 'Magically' combine the results quickly & simply

Toy Example: Logistic Regression

Subset posteriors: 'noisy' approximations of full data posterior.

Toy Example: Logistic Regression

- Subset posteriors: 'noisy' approximations of full data posterior.
- 'Averaging' of subset posteriors reduces this 'noise' & leads to an accurate posterior approximation.

 \gg Full data posterior density of *inid* data $Y^{(n)}$

$$\pi_n(\theta \mid Y^{(n)}) = \frac{\prod_{i=1}^n p_i(y_i \mid \theta) \pi(\theta)}{\int_{\Theta} \prod_{i=1}^n p_i(y_i \mid \theta) \pi(\theta) d\theta}$$

 \bullet Full data posterior density of *inid* data $Y^{(n)}$

$$\pi_n(\theta \mid Y^{(n)}) = \frac{\prod_{i=1}^n p_i(y_i \mid \theta) \pi(\theta)}{\int_{\Theta} \prod_{i=1}^n p_i(y_i \mid \theta) \pi(\theta) d\theta}.$$

• Divide full data $Y^{(n)}$ into k subsets of size m: $Y^{(n)} = (Y_{[1]}, \dots, Y_{[j]}, \dots, Y_{[k]}).$

 \bullet Full data posterior density of *inid* data $Y^{(n)}$

$$\pi_n(\theta \mid Y^{(n)}) = \frac{\prod_{i=1}^n p_i(y_i \mid \theta) \pi(\theta)}{\int_{\Theta} \prod_{i=1}^n p_i(y_i \mid \theta) \pi(\theta) d\theta}.$$

- Divide full data $Y^{(n)}$ into k subsets of size m: $Y^{(n)} = (Y_{[1]}, \dots, Y_{[j]}, \dots, Y_{[k]}).$
- Subset posterior density for *j*th data subset

$$\pi_m^{\boldsymbol{\gamma}}(\theta \mid Y_{[j]}) = \frac{\prod_{i \in [j]} (p_i(y_i \mid \theta))^{\boldsymbol{\gamma}} \pi(\theta)}{\int_{\Theta} \prod_{i \in [j]} (p_i(y_i \mid \theta))^{\boldsymbol{\gamma}} \pi(\theta) d\theta}.$$

 \bullet Full data posterior density of *inid* data $Y^{(n)}$

$$\pi_n(\theta \mid Y^{(n)}) = \frac{\prod_{i=1}^n p_i(y_i \mid \theta) \pi(\theta)}{\int_{\Theta} \prod_{i=1}^n p_i(y_i \mid \theta) \pi(\theta) d\theta}.$$

- Divide full data $Y^{(n)}$ into k subsets of size m: $Y^{(n)} = (Y_{[1]}, \dots, Y_{[j]}, \dots, Y_{[k]}).$
- Subset posterior density for *j*th data subset

$$\pi_m^{\gamma}(\theta \mid Y_{[j]}) = \frac{\prod_{i \in [j]} (p_i(y_i \mid \theta))^{\gamma} \pi(\theta)}{\int_{\Theta} \prod_{i \in [j]} (p_i(y_i \mid \theta))^{\gamma} \pi(\theta) d\theta}$$

 $\gamma = O(k)$ - chosen to minimize approximation error

Barycenter in Metric Spaces

Barycenter in Metric Spaces

WAsserstein barycenter of Subset Posteriors (WASP)

Srivastava, Li & Dunson (2015)

▶ 2-Wasserstein distance between μ , *ν* ∈ $\mathscr{P}_2(\Theta)$

$$W_2(\mu,\nu) = \inf\left\{\left(\mathbb{E}[d^2(X,Y)]\right)^{\frac{1}{2}} : \mathsf{law}(X) = \mu, \mathsf{law}(Y) = \nu\right\}.$$

WAsserstein barycenter of Subset Posteriors (WASP)

Srivastava, Li & Dunson (2015)

 \clubsuit 2-Wasserstein distance between *μ*, *ν* ∈ $\mathscr{P}_2(\Theta)$

$$W_{2}(\mu, \nu) = \inf \left\{ \left(\mathbb{E}[d^{2}(X, Y)] \right)^{\frac{1}{2}} : \mathsf{law}(X) = \mu, \, \mathsf{law}(Y) = \nu \right\}.$$

▶ $\Pi_m^{\gamma}(\cdot \mid Y_{[j]})$ for *j* = 1,...,*k* are combined through WASP

$$\overline{\Pi}_{n}^{\gamma}(\cdot \mid Y^{(n)}) = \underset{\Pi \in \mathscr{P}_{2}(\Theta)}{\operatorname{argmin}} \frac{1}{k} \sum_{j=1}^{k} W_{2}^{2}(\Pi, \Pi_{m}^{\gamma}(\cdot \mid Y_{[j]})). \quad \text{[Agueh & Carlier (2011)]}$$

WAsserstein barycenter of Subset Posteriors (WASP)

Srivastava, Li & Dunson (2015)

$$W_2(\mu, \nu) = \inf \left\{ \left(\mathbb{E}[d^2(X, Y)] \right)^{\frac{1}{2}} : \mathsf{law}(X) = \mu, \mathsf{law}(Y) = \nu \right\}.$$

• $\Pi_m^{\gamma}(\cdot \mid Y_{[j]})$ for j = 1, ..., k are combined through WASP

$$\overline{\Pi}_{n}^{\gamma}(\cdot \mid Y^{(n)}) = \underset{\Pi \in \mathscr{P}_{2}(\Theta)}{\operatorname{argmin}} \frac{1}{k} \sum_{j=1}^{k} W_{2}^{2}(\Pi, \Pi_{m}^{\gamma}(\cdot \mid Y_{[j]})). \quad \text{[Agueh & Carlier (2011)]}$$

▶ Plugging in $\widehat{\Pi}_{m}^{\gamma}(\cdot | Y_{[j]})$ for j = 1, ..., k, a linear program (LP) can be used for fast estimation of an atomic approximation!

 Minimizing Wasserstein is solution to a discrete optimal transport problem

- Minimizing Wasserstein is solution to a discrete optimal transport problem
- ▶ Let $\mu = \sum_{j=1}^{J_1} a_j \delta_{\theta_{1j}}$, $\nu = \sum_{l=1}^{J_2} b_l \delta_{\theta_{2l}}$ & **M**₁₂ ∈ ℜ^{J₁×J₂ = matrix of square differences in atoms { θ_{1j} }, { θ_{2l} }.}

- Minimizing Wasserstein is solution to a discrete optimal transport problem
- → Let $\mu = \sum_{j=1}^{J_1} a_j \delta_{\theta_{1j}}$, $\nu = \sum_{l=1}^{J_2} b_l \delta_{\theta_{2l}} \& \mathbf{M}_{12} \in \Re^{J_1 \times J_2}$ = matrix of square differences in atoms { θ_{1j} }, { θ_{2l} }.
- Optimal transport polytope: *T*(**a**, **b**) = set of doubly stochastic matrices w/ row sums **a** & column sums **b**

- Minimizing Wasserstein is solution to a discrete optimal transport problem
- → Let $\mu = \sum_{j=1}^{J_1} a_j \delta_{\theta_{1j}}$, $\nu = \sum_{l=1}^{J_2} b_l \delta_{\theta_{2l}} \& \mathbf{M}_{12} \in \Re^{J_1 \times J_2}$ = matrix of square differences in atoms { θ_{1j} }, { θ_{2l} }.
- Optimal transport polytope: \(\mathcal{T}(a, b) = set of doubly stochastic matrices w/ row sums a & column sums b)
- ▶ Objective is to find $\mathbf{T} \in \mathcal{T}(\mathbf{a}, \mathbf{b})$ minimizing tr($\mathbf{T}^T \mathbf{M}_{12}$)

- Minimizing Wasserstein is solution to a discrete optimal transport problem
- → Let $\mu = \sum_{j=1}^{J_1} a_j \delta_{\theta_{1j}}$, $\nu = \sum_{l=1}^{J_2} b_l \delta_{\theta_{2l}} \& \mathbf{M}_{12} \in \Re^{J_1 \times J_2}$ = matrix of square differences in atoms { θ_{1j} }, { θ_{2l} }.
- Optimal transport polytope: *T*(**a**, **b**) = set of doubly stochastic matrices w/ row sums **a** & column sums **b**
- ▶ Objective is to find $\mathbf{T} \in \mathcal{T}(\mathbf{a}, \mathbf{b})$ minimizing tr($\mathbf{T}^T \mathbf{M}_{12}$)
- For WASP, generalize to multimargin optimal transport problem
 entropy smoothing has been used previously

- Minimizing Wasserstein is solution to a discrete optimal transport problem
- → Let $\mu = \sum_{j=1}^{J_1} a_j \delta_{\theta_{1j}}$, $\nu = \sum_{l=1}^{J_2} b_l \delta_{\theta_{2l}}$ & **M**₁₂ ∈ ℜ^{J₁×J₂ = matrix of square differences in atoms { θ_{1j} }, { θ_{2l} }.}
- Optimal transport polytope: *T*(**a**, **b**) = set of doubly stochastic matrices w/ row sums **a** & column sums **b**
- ▶ Objective is to find $\mathbf{T} \in \mathcal{T}(\mathbf{a}, \mathbf{b})$ minimizing tr($\mathbf{T}^T \mathbf{M}_{12}$)
- For WASP, generalize to multimargin optimal transport problem
 entropy smoothing has been used previously
- We can avoid such smoothing & use sparse LP solvers neglible computation cost compared to sampling

WASP: Theorems

Theorem (Subset Posteriors)

Under "usual" regularity conditions, there exists a constant C_1 independent of subset posteriors, such that for large m,

$$\mathbb{E}_{P_{\theta_0}^{[j]}} W_2^2 \left\{ \Pi_m^{\boldsymbol{\gamma}}(\cdot \mid Y_{[j]}), \delta_{\theta_0}(\cdot) \right\} \le C_1 \left(\frac{\log^2 m}{m} \right)^{\frac{1}{\alpha}} \quad j = 1, \dots, k,$$

WASP: Theorems

Theorem (Subset Posteriors)

Under "usual" regularity conditions, there exists a constant C_1 independent of subset posteriors, such that for large m,

$$\mathbb{E}_{P_{\theta_0}^{[j]}} W_2^2 \left\{ \Pi_m^{\gamma}(\cdot \mid Y_{[j]}), \delta_{\theta_0}(\cdot) \right\} \le C_1 \left(\frac{\log^2 m}{m} \right)^{\frac{1}{\alpha}} \quad j = 1, \dots, k,$$

Theorem (WASP)

Under "usual" regularity conditions and for large m,

$$W_2\left\{\overline{\Pi}_n^{\gamma}(\cdot \mid Y^{(n)}), \delta_{\theta_0}(\cdot)\right\} = O_{P_{\theta_0}^{(n)}}\left(\sqrt{\frac{\log^{2/\alpha} m}{km^{1/\alpha}}}\right)$$

Li, Srivastava & Dunson (2017)

 Usually report point & interval estimates for different 1-d functionals - multidimensional posterior difficult to interpret

Li, Srivastava & Dunson (2017)

- Usually report point & interval estimates for different 1-d functionals - multidimensional posterior difficult to interpret
- WASP has explicit relationship with subset posteriors in 1-d

Li, Srivastava & Dunson (2017)

- Usually report point & interval estimates for different 1-d functionals - multidimensional posterior difficult to interpret
- WASP has explicit relationship with subset posteriors in 1-d
- Quantiles of WASP are simple averages of quantiles of subset posteriors

Li, Srivastava & Dunson (2017)

- Usually report point & interval estimates for different 1-d functionals - multidimensional posterior difficult to interpret
- WASP has explicit relationship with subset posteriors in 1-d
- Quantiles of WASP are simple averages of quantiles of subset posteriors
- Leads to a super trivial algorithm run MCMC for each subset & average quantiles reminiscent of bag of little bootstraps

Li, Srivastava & Dunson (2017)

- Usually report point & interval estimates for different 1-d functionals - multidimensional posterior difficult to interpret
- WASP has explicit relationship with subset posteriors in 1-d
- Quantiles of WASP are simple averages of quantiles of subset posteriors
- Leads to a super trivial algorithm run MCMC for each subset & average quantiles reminiscent of bag of little bootstraps
- Strong theory showing accuracy of the resulting approximation

Li, Srivastava & Dunson (2017)

- Usually report point & interval estimates for different 1-d functionals - multidimensional posterior difficult to interpret
- WASP has explicit relationship with subset posteriors in 1-d
- Quantiles of WASP are simple averages of quantiles of subset posteriors
- Leads to a super trivial algorithm run MCMC for each subset & average quantiles reminiscent of bag of little bootstraps
- Strong theory showing accuracy of the resulting approximation
- Can implement in STAN, which allows powered likelihoods

Theory on PIE/1-d WASP

We show 1-d WASP $\overline{\Pi}_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$
- We show 1-d WASP $\overline{\Pi}_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$
- ✤ As subset sample size *m* increases, W_2 distance between them decreases at faster than parametric rate $o_p(n^{-1/2})$

- We show 1-d WASP $\overline{\Pi}_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$
- ✤ As subset sample size *m* increases, *W*₂ distance between them decreases at faster than parametric rate $o_p(n^{-1/2})$
- Theorem allows $k = O(n^c)$ and $m = O(n^{1-c})$ for any *c* ∈ (0, 1), so *m* can increase very slowly relative to *k* (*recall n* = *mk*)

- We show 1-d WASP $\overline{\Pi}_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$
- ✤ As subset sample size *m* increases, W_2 distance between them decreases at faster than parametric rate $o_p(n^{-1/2})$
- ▶ Theorem allows $k = O(n^c)$ and $m = O(n^{1-c})$ for any $c \in (0, 1)$, so *m* can increase very slowly relative to *k* (*recall* n = mk)
- Their biases, variances, quantiles only differ in high orders of the total sample size

- We show 1-d WASP $\overline{\Pi}_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$
- ✤ As subset sample size *m* increases, W_2 distance between them decreases at faster than parametric rate $o_p(n^{-1/2})$
- ▶ Theorem allows $k = O(n^c)$ and $m = O(n^{1-c})$ for any $c \in (0, 1)$, so *m* can increase very slowly relative to *k* (*recall* n = mk)
- Their biases, variances, quantiles only differ in high orders of the total sample size
- <u>Conditions</u>: standard, mild conditions on likelihood + prior finite 2nd moment & uniform integrability of subset posteriors

Ne have implemented for rich variety of data & models

- We have implemented for rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression

- We have implemented for rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression
- » Nonparametric models, dependence, hierarchical models, etc.

- We have implemented for rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression
- Nonparametric models, dependence, hierarchical models, etc.
- We compare to long runs of MCMC (when feasible) & VB

- We have implemented for rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression
- Nonparametric models, dependence, hierarchical models, etc.
- We compare to long runs of MCMC (when feasible) & VB
- WASP/PIE is <u>much</u> faster than MCMC & highly accurate

- We have implemented for rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression
- Nonparametric models, dependence, hierarchical models, etc.
- We compare to long runs of MCMC (when feasible) & VB
- WASP/PIE is <u>much</u> faster than MCMC & highly accurate
- Carefully designed VB implementations often do very well

 Different way to speed up MCMC - replace expensive transition kernels with approximations

- Different way to speed up MCMC replace expensive transition kernels with approximations
- For example, approximate a conditional distribution in Gibbs sampler with a Gaussian or using a subsample of data

- Different way to speed up MCMC replace expensive transition kernels with approximations
- For example, approximate a conditional distribution in Gibbs sampler with a Gaussian or using a subsample of data
- Can potentially vastly speed up MCMC sampling in high-dimensional settings

- Different way to speed up MCMC replace expensive transition kernels with approximations
- For example, approximate a conditional distribution in Gibbs sampler with a Gaussian or using a subsample of data
- Can potentially vastly speed up MCMC sampling in high-dimensional settings
- Original MCMC sampler converges to a stationary distribution corresponding to the exact posterior

- Different way to speed up MCMC replace expensive transition kernels with approximations
- For example, approximate a conditional distribution in Gibbs sampler with a Gaussian or using a subsample of data
- Can potentially vastly speed up MCMC sampling in high-dimensional settings
- Original MCMC sampler converges to a stationary distribution corresponding to the exact posterior
- Not clear what happens when we start substituting in approximations - may diverge etc

 aMCMC is used routinely - there is an increasing rich literature on algorithms

- aMCMC is used routinely there is an increasing rich literature on algorithms
- Theory: guarantees can be used to target design of algorithms

- aMCMC is used routinely there is an increasing rich literature on algorithms
- Theory: guarantees can be used to target design of algorithms
- Define 'exact' MCMC algorithm, which is computationally intractable but has good mixing

- aMCMC is used routinely there is an increasing rich literature on algorithms
- Theory: guarantees can be used to target design of algorithms
- Define 'exact' MCMC algorithm, which is computationally intractable but has good mixing
- 'exact' chain converges to stationary distribution corresponding to exact posterior

- aMCMC is used routinely there is an increasing rich literature on algorithms
- Theory: guarantees can be used to target design of algorithms
- Define 'exact' MCMC algorithm, which is computationally intractable but has good mixing
- 'exact' chain converges to stationary distribution corresponding to exact posterior
- Approximate kernel in exact chain with more computationally tractable alternative

► Define $s_{\epsilon} = \tau_1(\mathscr{P}) / \tau_1(\mathscr{P}_{\epsilon}) = computational speed-up, \tau_1(\mathscr{P}) = time for one step with transition kernel <math>\mathscr{P}$

- ▶ Define $s_{\epsilon} = \tau_1(\mathscr{P}) / \tau_1(\mathscr{P}_{\epsilon}) = computational speed-up, \tau_1(\mathscr{P}) = time for one step with transition kernel 𝒫$
- <u>Interest</u>: optimizing computational time-accuracy tradeoff for estimators of $\Pi f = \int_{\Theta} f(\theta) \Pi(d\theta|x)$

- ▶ Define $s_{\epsilon} = \tau_1(\mathscr{P}) / \tau_1(\mathscr{P}_{\epsilon}) = computational speed-up, \tau_1(\mathscr{P}) = time for one step with transition kernel 𝒫$
- Interest: optimizing computational time-accuracy tradeoff for estimators of Π*f* = ∫_Θ *f*(θ)Π(dθ|x)
- We provide tight, finite sample bounds on L₂ error

- Define $s_{\epsilon} = \tau_1(\mathscr{P})/\tau_1(\mathscr{P}_{\epsilon}) = computational speed-up, \tau_1(\mathscr{P}) = time for one step with transition kernel <math>\mathscr{P}$
- <u>Interest</u>: optimizing computational time-accuracy tradeoff for estimators of $\Pi f = \int_{\Theta} f(\theta) \Pi(d\theta|x)$
- We provide *tight, finite sample* bounds on *L*₂ error
- aMCMC estimators win for low computational budgets but have asymptotic bias

- ⇒ Define $s_{\epsilon} = \tau_1(\mathscr{P}) / \tau_1(\mathscr{P}_{\epsilon}) = computational speed-up, \tau_1(\mathscr{P}) = time for one step with transition kernel <math>\mathscr{P}$
- <u>Interest</u>: optimizing computational time-accuracy tradeoff for estimators of $\Pi f = \int_{\Theta} f(\theta) \Pi(d\theta|x)$
- We provide *tight, finite sample* bounds on *L*₂ error
- aMCMC estimators win for low computational budgets but have asymptotic bias
- Solution Provide the second seco

» Replace the full data likelihood with

$$L_{\varepsilon}(x \mid \theta) = \left(\prod_{i \in V} L(x_i \mid \theta)\right)^{N/|V|},$$

for randomly chosen subset $V \subset \{1, ..., n\}$.

Replace the full data likelihood with

$$L_{\epsilon}(x \mid \theta) = \left(\prod_{i \in V} L(x_i \mid \theta)\right)^{N/|V|},$$

for randomly chosen subset $V \subset \{1, ..., n\}$.

 Applied to Pólya-Gamma data augmentation for logistic regression

Replace the full data likelihood with

$$L_{\varepsilon}(x \mid \theta) = \left(\prod_{i \in V} L(x_i \mid \theta)\right)^{N/|V|},$$

for randomly chosen subset $V \subset \{1, ..., n\}$.

- Applied to Pólya-Gamma data augmentation for logistic regression
- Different V at each iteration trivial modification to Gibbs

Replace the full data likelihood with

$$L_{\varepsilon}(x \mid \theta) = \left(\prod_{i \in V} L(x_i \mid \theta)\right)^{N/|V|},$$

for randomly chosen subset $V \subset \{1, ..., n\}$.

- Applied to Pólya-Gamma data augmentation for logistic regression
- Different V at each iteration trivial modification to Gibbs
- Assumptions hold with high probability for subsets > minimal size (wrt distribution of subsets, data & kernel).

✤ n = 5,000,000 (0.5 million test), binary outcome & 18 continuous covariates

- ✤ n = 5,000,000 (0.5 million test), binary outcome & 18 continuous covariates
- ▶ Considered subsets sizes ranging from |V| = 1,000 to 4,500,000

- ▶ Considered subsets sizes ranging from |V| = 1,000 to 4,500,000
- Considered different losses as function of |V|

- ▶ Considered subsets sizes ranging from |V| = 1,000 to 4,500,000
- Considered different losses as function of |V|

- ▶ Considered subsets sizes ranging from |V| = 1,000 to 4,500,000
- Considered different losses as function of |V|
- ▶ Rate at which loss $\rightarrow 0$ with *c* heavily dependent on loss
- For small computational budget & focus on posterior mean estimation, small subsets preferred

- ▶ Considered subsets sizes ranging from |V| = 1,000 to 4,500,000
- Considered different losses as function of |V|
- ▶ Rate at which loss $\rightarrow 0$ with *c* heavily dependent on loss
- For small computational budget & focus on posterior mean estimation, small subsets preferred
- As budget increases & loss focused more on tails (e.g., for interval estimation), optimal |V| increases

Application 2: Mixture models & tensor factorizations f = f + fTSUSOR PREAFAC

We also considered a nonparametric Bayes model:

$$\operatorname{pr}(y_{i1} = c_1, \dots, y_{ip} = c_p) = \sum_{h=1}^k \lambda_h \prod_{j=1}^p \psi_{hc_j}^{(j)},$$

a very useful model for multivariate categorical data
Application 2: Mixture models & tensor factorizations f = f + fTSUSOR PREAFAC

We also considered a nonparametric Bayes model:

$$\operatorname{pr}(y_{i1} = c_1, \dots, y_{ip} = c_p) = \sum_{h=1}^k \lambda_h \prod_{j=1}^p \psi_{hc_j}^{(j)},$$

a very useful model for multivariate categorical data

Dunson & Xing (2009) - a data augmentation Gibbs sampler

Application 2: Mixture models & tensor factorizations f = f + fTSUSOR PREAFAC

We also considered a nonparametric Bayes model:

$$\operatorname{pr}(y_{i1} = c_1, \dots, y_{ip} = c_p) = \sum_{h=1}^k \lambda_h \prod_{j=1}^p \psi_{hc_j}^{(j)},$$

- Dunson & Xing (2009) a data augmentation Gibbs sampler
- Sampling latent classes computationally prohibitive for huge n

Application 2: Mixture models & tensor factorizations f = f + f

We also considered a nonparametric Bayes model:

$$\operatorname{pr}(y_{i1} = c_1, \dots, y_{ip} = c_p) = \sum_{h=1}^k \lambda_h \prod_{j=1}^p \psi_{hc_j}^{(j)},$$

- Dunson & Xing (2009) a data augmentation Gibbs sampler
- Sampling latent classes computationally prohibitive for huge n
- Use adaptive Gaussian approximation avoid sampling individual latent classes

Application 2: Mixture models & tensor factorizations f = f + f

We also considered a nonparametric Bayes model:

$$\operatorname{pr}(y_{i1} = c_1, \dots, y_{ip} = c_p) = \sum_{h=1}^k \lambda_h \prod_{j=1}^p \psi_{hc_j}^{(j)},$$

- Dunson & Xing (2009) a data augmentation Gibbs sampler
- Sampling latent classes computationally prohibitive for huge n
- Use adaptive Gaussian approximation avoid sampling individual latent classes
- We have shown Assumptions 1-2, Assumption 2 result more general than this setting

Application 2: Mixture models & tensor factorizations f = f + f

We also considered a nonparametric Bayes model:

$$\operatorname{pr}(y_{i1} = c_1, \dots, y_{ip} = c_p) = \sum_{h=1}^k \lambda_h \prod_{j=1}^p \psi_{hc_j}^{(j)},$$

- Dunson & Xing (2009) a data augmentation Gibbs sampler
- Sampling latent classes computationally prohibitive for huge n
- Use adaptive Gaussian approximation avoid sampling individual latent classes
- We have shown Assumptions 1-2, Assumption 2 result more general than this setting
- Improved computation performance for large n

∞ Gaussian process regression, $y_i = f(x_i) + \eta_i$, $\eta_i \sim N(0, \sigma^2)$

- **∞** Gaussian process regression, $y_i = f(x_i) + \eta_i$, $\eta_i \sim N(0, \sigma^2)$
- $f \sim GP$ prior with covariance $\tau^2 \exp(-\phi ||x_1 x_2||^2)$

- **∞** Gaussian process regression, $y_i = f(x_i) + \eta_i$, $\eta_i \sim N(0, \sigma^2)$
- $f \sim GP$ prior with covariance $\tau^2 \exp(-\phi ||x_1 x_2||^2)$
- ${}$ Discrete-uniform on ϕ & gamma priors on au^{-2}, σ^{-2}

- Gaussian process regression, $y_i = f(x_i) + \eta_i$, $\eta_i \sim N(0, \sigma^2)$
- $f \sim GP$ prior with covariance $\tau^2 \exp(-\phi ||x_1 x_2||^2)$
- ${}$ Discrete-uniform on ϕ & gamma priors on au^{-2}, σ^{-2}
- Marginal MCMC sampler updates $\phi, \tau^{-2}, \sigma^{-2}$

- Gaussian process regression, $y_i = f(x_i) + \eta_i$, $\eta_i \sim N(0, \sigma^2)$
- $f \sim GP$ prior with covariance $\tau^2 \exp(-\phi ||x_1 x_2||^2)$
- ${}$ Discrete-uniform on ϕ & gamma priors on au^{-2}, σ^{-2}
- Marginal MCMC sampler updates $\phi, \tau^{-2}, \sigma^{-2}$
- We show Assumption 1 holds under mild regularity conditions on "truth", Assumption 2 holds for partial rank-r eigen approximation to Σ

- **∞** Gaussian process regression, $y_i = f(x_i) + \eta_i$, $\eta_i \sim N(0, \sigma^2)$
- $f \sim GP$ prior with covariance $\tau^2 \exp(-\phi ||x_1 x_2||^2)$
- ho Discrete-uniform on ϕ & gamma priors on au^{-2} , σ^{-2}
- Marginal MCMC sampler updates $\phi, \tau^{-2}, \sigma^{-2}$
- We show Assumption 1 holds under mild regularity conditions on "truth", Assumption 2 holds for partial rank-r eigen approximation to Σ
- Less accurate approximations clearly superior in practice for small computational budget

 EP-MCMC & aMCMC can be used in many-many settings to vastly speed up computation for big n

- EP-MCMC & aMCMC can be used in many-many settings to vastly speed up computation for big n
- Here, I just illustrated some of the possible algorithms there is an increasingly huge literature on many other approaches

- EP-MCMC & aMCMC can be used in many-many settings to vastly speed up computation for big n
- Here, I just illustrated some of the possible algorithms there is an increasingly huge literature on many other approaches
- aMCMC can just as easily be used in high-dimensional (large p) problems

- EP-MCMC & aMCMC can be used in many-many settings to vastly speed up computation for big n
- Here, I just illustrated some of the possible algorithms there is an increasingly huge literature on many other approaches
- aMCMC can just as easily be used in high-dimensional (large p) problems
- It is also certainly possible to combine EP-MCMC + aMCMC

- EP-MCMC & aMCMC can be used in many-many settings to vastly speed up computation for big n
- Here, I just illustrated some of the possible algorithms there is an increasingly huge literature on many other approaches
- aMCMC can just as easily be used in high-dimensional (large p) problems
- It is also certainly possible to combine EP-MCMC + aMCMC
- Robustness: one topic we haven't discussed yet is robustness

 In standard Bayesian inference, it is assumed that the model is correct.

- In standard Bayesian inference, it is assumed that the model is correct.
- Small violations of this assumption <u>sometimes</u> have a large impact, particularly in large datasets

- In standard Bayesian inference, it is assumed that the model is correct.
- Small violations of this assumption <u>sometimes</u> have a large impact, particularly in large datasets
- "All models are wrong," & ability to carefully check modeling assumptions decreases for big/complex data

- In standard Bayesian inference, it is assumed that the model is correct.
- Small violations of this assumption <u>sometimes</u> have a large impact, particularly in large datasets
- "All models are wrong," & ability to carefully check modeling assumptions decreases for big/complex data
- Appealing to tweak Bayesian paradigm to be inherently more robust

Example: Perturbed mixture of Gaussians

Nixtures are often used for clustering.

Example: Perturbed mixture of Gaussians

- Mixtures are often used for clustering.
- But if the data distribution is not exactly a mixture from the assumed family, the posterior will tend to introduce more & more clusters as n grows, in order to fit the data.

Example: Perturbed mixture of Gaussians

- Mixtures are often used for clustering.
- But if the data distribution is not exactly a mixture from the assumed family, the posterior will tend to introduce more & more clusters as n grows, in order to fit the data.
- As a result, interpretability of clusters may break down.

Each sample has 3 to 20-dim measurements on 10K's of cells.

- Each sample has 3 to 20-dim measurements on 10K's of cells.
- Manual clustering is time-consuming and subjective.

- Each sample has 3 to 20-dim measurements on 10K's of cells.
- Manual clustering is time-consuming and subjective.
- Multivariate Gaussian mixture yields too many clusters.

- Each sample has 3 to 20-dim measurements on 10K's of cells.
- Manual clustering is time-consuming and subjective.
- Multivariate Gaussian mixture yields too many clusters.
- Example: GvHD data from FLOWCAP-I.

This is often impractical for a number of reasons.

This is often impractical for a number of reasons.
 insufficient insight into the data generating process

- This is often impractical for a number of reasons.

 - time and effort to design model + algorithms, and develop theory

- This is often impractical for a number of reasons.

 - time and effort to design model + algorithms, and develop theory
 - slower and more complicated to do inference

- This is often impractical for a number of reasons.

 - time and effort to design model + algorithms, and develop theory

- This is often impractical for a number of reasons.

 - time and effort to design model + algorithms, and develop theory

 - output to be used in practice
 output to be used in practice
 output
 output

- This is often impractical for a number of reasons.

 - time and effort to design model + algorithms, and develop theory
 - slower and more complicated to do inference
 - output to be used in practice
 output to be used in practice
 output
 output
- Further, a simple model may be more appropriate, even if wrong.

There are many reasons to prefer simple, interpretable, efficient models. But we need a way to do inference that is robust to misspecification.

- This is often impractical for a number of reasons.

 - time and effort to design model + algorithms, and develop theory
 - slower and more complicated to do inference
 - output to be used in practice
 output to be used in practice
 output
 output
- Further, a simple model may be more appropriate, even if wrong.

There are many reasons to prefer simple, interpretable, efficient models. But we need a way to do inference that is robust to misspecification.

- This is often impractical for a number of reasons.

 - time and effort to design model + algorithms, and develop theory

 - output to be used in practice
 output to be used in practice
 output
 output
- Further, a simple model may be more appropriate, even if wrong.

 - Many models are idealizations that are known to be inexact, but have interpretable parameters that provide insight into the questions of interest.

There are many reasons to prefer simple, interpretable, efficient models. But we need a way to do inference that is robust to misspecification.

▶ Assume a model $\{P_{\theta} : \theta \in \Theta\}$ and a prior $\pi(\theta)$.

- ▶ Assume a model { P_θ : $\theta \in \Theta$ } and a prior $\pi(\theta)$.
- Suppose $\theta_I \in \Theta$ represents the *idealized distribution* of the data.

- ▶ Assume a model { P_{θ} : $\theta \in \Theta$ } and a prior $\pi(\theta)$.
- ⇒ Suppose $\theta_I \in \Theta$ represents the *idealized distribution* of the data. The interpretation here is that θ_I is the "true" state of nature about which one is interested in making inferences.

- ▶ Assume a model { P_{θ} : $\theta \in \Theta$ } and a prior $\pi(\theta)$.
- Suppose θ_I ∈ Θ represents the *idealized distribution* of the data. The interpretation here is that θ_I is the "true" state of nature about which one is interested in making inferences.
- Suppose $X_1, ..., X_n$ i.i.d. ~ P_{θ_1} are unobserved *idealized data*.

- ▶ Assume a model { P_θ : $\theta \in \Theta$ } and a prior $\pi(\theta)$.
- Suppose θ_I ∈ Θ represents the *idealized distribution* of the data. The interpretation here is that θ_I is the "true" state of nature about which one is interested in making inferences.
- Suppose X_1, \ldots, X_n i.i.d. ~ P_{θ_I} are unobserved *idealized data*.
- ▶ However, the *observed data* $x_1, ..., x_n$ are actually a slightly corrupted version of $X_1, ..., X_n$ in the sense that
- Bign $d(\hat{P}_{X_{1:n}}, \hat{P}_{X_{1:n}}) < R$ for some statistical distance $d(\cdot, \cdot)$.

If there were no corruption, then we should use the standard posterior

 $\pi(\theta \mid X_{1:n} = x_{1:n}).$

If there were no corruption, then we should use the standard posterior

$$\pi(\theta \mid X_{1:n} = x_{1:n}).$$

However, due to the corruption this would clearly be incorrect.

If there were no corruption, then we should use the standard posterior

$$\pi(\theta \mid X_{1:n} = x_{1:n}).$$

- However, due to the corruption this would clearly be incorrect.
- Instead, a natural Bayesian approach would be to condition on what is known, giving us the *coarsened posterior* or *c-posterior*,

 $\pi(\theta \mid d(\hat{P}_{X_{1:n}}, \hat{P}_{x_{1:n}}) < R).$

 If there were no corruption, then we should use the standard posterior

$$\pi(\theta \mid X_{1:n} = x_{1:n}).$$

- However, due to the corruption this would clearly be incorrect.
- Instead, a natural Bayesian approach would be to condition on what is known, giving us the coarsened posterior or c-posterior,

$$\pi(\theta \mid d(\hat{P}_{X_{1:n}}, \hat{P}_{X_{1:n}}) < R).$$

 Since *R* may be difficult to choose *a priori*, put a prior on it: *R* ~ *H*.

If there were no corruption, then we should use the standard posterior

$$\pi(\theta \mid X_{1:n} = x_{1:n}).$$

- However, due to the corruption this would clearly be incorrect.
- Instead, a natural Bayesian approach would be to condition on what is known, giving us the coarsened posterior or c-posterior,

$$\pi(\theta \mid d(\hat{P}_{X_{1:n}}, \hat{P}_{X_{1:n}}) < R).$$

- Since *R* may be difficult to choose *a priori*, put a prior on it: *R* ~ *H*.
- More generally, consider

$$\pi\big(\theta \mid d_n(X_{1:n}, x_{1:n}) < R\big)$$

where $d_n(X_{1:n}, x_{1:n}) \ge 0$ is some measure of the discrepancy between $X_{1:n}$ and $x_{1:n}$.

There are many possible choices of discrepancy but relative entropy works out exceptionally nicely.

- There are many possible choices of discrepancy but relative entropy works out exceptionally nicely.
- Suppose $d_n(X_{1:n}, x_{1:n})$ is a consistent estimator of $D(p_o || p_\theta)$ when $X_i \stackrel{iid}{\sim} p_\theta$ and $x_i \stackrel{iid}{\sim} p_o$.

- There are many possible choices of discrepancy but relative entropy works out exceptionally nicely.
- Suppose $d_n(X_{1:n}, x_{1:n})$ is a consistent estimator of $D(p_o || p_\theta)$ when $X_i \stackrel{iid}{\sim} p_\theta$ and $x_i \stackrel{iid}{\sim} p_o$.
- When $R \sim \exp(\alpha)$, we have the *power posterior* approximation,

$$\pi(\theta \mid d_n(X_{1:n}, x_{1:n}) < R) \propto \pi(\theta) \prod_{i=1}^n p_\theta(x_i)^{\zeta_n}$$

where $\zeta_n = \alpha / (\alpha + n)$.

- There are many possible choices of discrepancy but relative entropy works out exceptionally nicely.
- Suppose $d_n(X_{1:n}, x_{1:n})$ is a consistent estimator of $D(p_o || p_\theta)$ when $X_i \stackrel{iid}{\sim} p_\theta$ and $x_i \stackrel{iid}{\sim} p_o$.
- When $R \sim \exp(\alpha)$, we have the *power posterior* approximation,

$$\pi \left(\theta \mid d_n(X_{1:n}, x_{1:n}) < R \right) \propto \pi(\theta) \prod_{i=1}^n p_\theta(x_i)^{\zeta_n}$$

where $\zeta_n = \alpha/(\alpha + n)$.

The power posterior enables inference using standard techniques:

- There are many possible choices of discrepancy but relative entropy works out exceptionally nicely.
- Suppose $d_n(X_{1:n}, x_{1:n})$ is a consistent estimator of $D(p_o || p_\theta)$ when $X_i \stackrel{iid}{\sim} p_\theta$ and $x_i \stackrel{iid}{\sim} p_o$.
- When $R \sim \exp(\alpha)$, we have the *power posterior* approximation,

$$\pi \left(\theta \mid d_n(X_{1:n}, x_{1:n}) < R \right) \propto \pi(\theta) \prod_{i=1}^n p_\theta(x_i)^{\zeta_n}$$

where $\zeta_n = \alpha/(\alpha + n)$.

- The power posterior enables inference using standard techniques:
 - Analytical solutions in the case of conjugate priors

- There are many possible choices of discrepancy but relative entropy works out exceptionally nicely.
- Suppose $d_n(X_{1:n}, x_{1:n})$ is a consistent estimator of $D(p_o || p_\theta)$ when $X_i \stackrel{iid}{\sim} p_\theta$ and $x_i \stackrel{iid}{\sim} p_o$.
- When $R \sim \exp(\alpha)$, we have the *power posterior* approximation,

$$\pi \left(\theta \mid d_n(X_{1:n}, x_{1:n}) < R \right) \propto \pi(\theta) \prod_{i=1}^n p_\theta(x_i)^{\zeta_n}$$

where $\zeta_n = \alpha/(\alpha + n)$.

- The power posterior enables inference using standard techniques:
 - Analytical solutions in the case of conjugate priors
 - MCMC is also straightforward

Toy example: Bernoulli trials

Suppose $H_0: \theta = 0.5$ is true; e.g, heads & tails are equally likely in repeated coin flips

Toy example: Bernoulli trials

- Suppose $H_0: \theta = 0.5$ is true; e.g, heads & tails are equally likely in repeated coin flips
- But x_1, \ldots, x_n are corrupted and behave like Bernoulli(0.51) samples.

Toy example: Bernoulli trials

- Suppose $H_0: \theta = 0.5$ is true; e.g, heads & tails are equally likely in repeated coin flips
- But x₁,..., x_n are corrupted and behave like Bernoulli(0.51) samples.
- The c-posterior is robust to this, but the standard posterior is not.

Nodel: $X_1, \ldots, X_n | w, \varphi$ i.i.d. $\sim \sum_{i=1}^K w_i f_{\varphi_i}(x)$

- Model: $X_1, \ldots, X_n | w, \varphi$ i.i.d. $\sim \sum_{i=1}^K w_i f_{\varphi_i}(x)$
- Prior: $w \sim \text{Dirichlet}(\gamma_1, \dots, \gamma_K)$ and $\varphi_1, \dots, \varphi_K \stackrel{iid}{\sim} H$.

- Model: $X_1, \ldots, X_n | w, \varphi$ i.i.d. $\sim \sum_{i=1}^K w_i f_{\varphi_i}(x)$
- Prior: $w \sim \text{Dirichlet}(\gamma_1, \dots, \gamma_K)$ and $\varphi_1, \dots, \varphi_K \stackrel{iid}{\sim} H$.
- » c-Posterior is approximated as

$$\pi(w,\varphi \mid d_n(X_{1:n},x_{1:n}) < R) \propto \pi(w,\varphi) \prod_{j=1}^n \left(\sum_{i=1}^K w_i f_{\varphi_i}(x_j)\right)^{\zeta_n}$$

where $\zeta_n = \alpha / (\alpha + n)$.

- Model: $X_1, \ldots, X_n | w, \varphi$ i.i.d. $\sim \sum_{i=1}^K w_i f_{\varphi_i}(x)$
- Prior: $w \sim \text{Dirichlet}(\gamma_1, \dots, \gamma_K)$ and $\varphi_1, \dots, \varphi_K \stackrel{iid}{\sim} H$.
- c-Posterior is approximated as

$$\pi(w,\varphi|d_n(X_{1:n},x_{1:n}) < R) \propto \pi(w,\varphi) \prod_{j=1}^n \left(\sum_{i=1}^K w_i f_{\varphi_i}(x_j)\right)^{\zeta_n}$$

where $\zeta_n = \alpha/(\alpha + n)$.

A straightforward MCMC algorithm can be used for computation

- Model: $X_1, \ldots, X_n | w, \varphi$ i.i.d. $\sim \sum_{i=1}^K w_i f_{\varphi_i}(x)$
- Prior: $w \sim \text{Dirichlet}(\gamma_1, \dots, \gamma_K)$ and $\varphi_1, \dots, \varphi_K \stackrel{iid}{\sim} H$.
- c-Posterior is approximated as

$$\pi(w,\varphi \mid d_n(X_{1:n}, x_{1:n}) < R) \propto \pi(w,\varphi) \prod_{j=1}^n \left(\sum_{i=1}^K w_i f_{\varphi_i}(x_j)\right)^{\zeta_n}$$

where $\zeta_n = \alpha/(\alpha + n)$.

- A straightforward MCMC algorithm can be used for computation
- Scales well to large datasets

- Model: $X_1, \ldots, X_n | w, \varphi$ i.i.d. $\sim \sum_{i=1}^K w_i f_{\varphi_i}(x)$
- Prior: $w \sim \text{Dirichlet}(\gamma_1, \dots, \gamma_K)$ and $\varphi_1, \dots, \varphi_K \stackrel{iid}{\sim} H$.
- c-Posterior is approximated as

$$\pi(w,\varphi \mid d_n(X_{1:n}, x_{1:n}) < R) \propto \pi(w,\varphi) \prod_{j=1}^n \left(\sum_{i=1}^K w_i f_{\varphi_i}(x_j)\right)^{\zeta_n}$$

where $\zeta_n = \alpha/(\alpha + n)$.

- A straightforward MCMC algorithm can be used for computation
- Scales well to large datasets
- EP-MCMC, a-MCMC etc can be used to enhance scalability

Example: Perturbed mixture of Gaussians

Example: Perturbed mixture of Gaussians

Results: Flow cytometry clustering

Clustering on test datasets closely matches manual ground truth.

Results: Flow cytometry clustering

Table 1: Average F-measures on the flow cytometry test set (GvHD datasets 7–12).

	7	8	9	10	11	12
Standard	0.532	0.478	0.619	0.453	0.542	0.585
Coarsened	0.667	0.875	0.931	0.998	0.989	0.993

- Clustering on test datasets closely matches manual ground truth.
- \circledast Use F-measure to quantify similarity of partitions \mathscr{A} and \mathscr{B} :

$$F(\mathcal{A},\mathcal{B}) = \sum_{A \in \mathcal{A}} \frac{|A|}{N} \max_{B \in \mathcal{B}} \frac{2|A \cap B|}{|A| + |B|}.$$

 c-Bayes provides a framework for improving robustness to model misspecification

- c-Bayes provides a framework for improving robustness to model misspecification
- Particularly useful when interest is in model-based inferences & sample size n is large

- c-Bayes provides a framework for improving robustness to model misspecification
- Particularly useful when interest is in model-based inferences & sample size n is large
- If we just want a black box for prediction may as well let the model grow (unnecessarily) in complexity with n

- c-Bayes provides a framework for improving robustness to model misspecification
- Particularly useful when interest is in model-based inferences & sample size n is large
- If we just want a black box for prediction may as well let the model grow (unnecessarily) in complexity with n
- c-Bayes can be implemented with a particular power posterior

- c-Bayes provides a framework for improving robustness to model misspecification
- Particularly useful when interest is in model-based inferences & sample size n is large
- If we just want a black box for prediction may as well let the model grow (unnecessarily) in complexity with n
- c-Bayes can be implemented with a particular power posterior
- All the scalable MCMC tricks developed for regular posteriors can be used directly

- c-Bayes provides a framework for improving robustness to model misspecification
- Particularly useful when interest is in model-based inferences & sample size n is large
- If we just want a black box for prediction may as well let the model grow (unnecessarily) in complexity with n
- c-Bayes can be implemented with a particular power posterior
- All the scalable MCMC tricks developed for regular posteriors can be used directly
- Also provides a motivation for doing Bayesian inferences based on subsamples

Hybrid high-dimensional density estimation

Ye, Canale & Dunson (2016, AISTATS)

 $y_i = (y_{i1}, \dots, y_{ip})^T \sim f$ with *p* large & *f* an unknown density

- Ye, Canale & Dunson (2016, AISTATS)
- $y_i = (y_{i1}, \dots, y_{ip})^T \sim f$ with *p* large & *f* an unknown density
- Potentially use Dirichlet process mixtures of factor models

Ye, Canale & Dunson (2016, AISTATS)

- $y_i = (y_{i1}, \dots, y_{ip})^T \sim f$ with *p* large & *f* an unknown density
- Potentially use Dirichlet process mixtures of factor models
- \blacktriangleright Approach doesn't scale well at all with p

Ye, Canale & Dunson (2016, AISTATS)

- $y_i = (y_{i1}, \dots, y_{ip})^T \sim f$ with *p* large & *f* an unknown density
- Potentially use Dirichlet process mixtures of factor models
- \blacksquare Approach doesn't scale well at all with p
- Instead use hybrid of Gibbs sampling & fast multiscale SVD

Ye, Canale & Dunson (2016, AISTATS)

- $y_i = (y_{i1}, \dots, y_{ip})^T \sim f$ with *p* large & *f* an unknown density
- Potentially use Dirichlet process mixtures of factor models
- \blacksquare Approach doesn't scale well at all with p
- Instead use hybrid of Gibbs sampling & fast multiscale SVD
- Scalable, excellent mixing & empirical/predictive performance

Outline

Motivation & background

Big n

High-dimensional data (big p)

Thus far we have focused on solving computational & robustness problems arising in large n

- Thus far we have focused on solving computational & robustness problems arising in large n
- In many ways these problems are easier to deal with then issues with high-dimensional/complex data

- Thus far we have focused on solving computational & robustness problems arising in large n
- In many ways these problems are easier to deal with then issues with high-dimensional/complex data
- For example, in biomedical studies we routinely measure HUGE numbers of features/study subjects

- Thus far we have focused on solving computational & robustness problems arising in large n
- In many ways these problems are easier to deal with then issues with high-dimensional/complex data
- For example, in biomedical studies we routinely measure HUGE numbers of features/study subjects
- Genomics, precision medicine, neuroimaging, etc

- Thus far we have focused on solving computational & robustness problems arising in large n
- In many ways these problems are easier to deal with then issues with high-dimensional/complex data
- For example, in biomedical studies we routinely measure HUGE numbers of features/study subjects
- Genomics, precision medicine, neuroimaging, etc
- ${}$ We have very few labeled data relative to data dimensionality p

- Thus far we have focused on solving computational & robustness problems arising in large n
- In many ways these problems are easier to deal with then issues with high-dimensional/complex data
- For example, in biomedical studies we routinely measure HUGE numbers of features/study subjects
- Senomics, precision medicine, neuroimaging, etc
- \circledast We have very few labeled data relative to data dimensionality p
- We also don't want a black box for prediction but want to do scientific inferences

- Thus far we have focused on solving computational & robustness problems arising in large n
- In many ways these problems are easier to deal with then issues with high-dimensional/complex data
- For example, in biomedical studies we routinely measure HUGE numbers of features/study subjects
- » Genomics, precision medicine, neuroimaging, etc
- \circledast We have very few labeled data relative to data dimensionality p
- We also don't want a black box for prediction but want to do scientific inferences
- Bayes for big p is a huge topic I'll just provide some vignettes to give a flavor

✤ Huge focus in sciences on variable selection

- Huge focus in sciences on variable selection
- For example, select the genetic variants x_j associated with a response (phenotype) y

- Huge focus in sciences on variable selection
- For example, select the genetic variants x_j associated with a response (phenotype) y
- \bullet Sample size *n* is modest & # genetic variants *p* is huge

- Huge focus in sciences on variable selection
- For example, select the genetic variants x_j associated with a response (phenotype) y
- \bullet Sample size *n* is modest & # genetic variants *p* is huge
- \bullet Large p, small n problem

- Huge focus in sciences on variable selection
- For example, select the genetic variants x_j associated with a response (phenotype) y
- \bullet Sample size *n* is modest & # genetic variants *p* is huge
- \bullet Large p, small n problem
- Huge literature for dealing with this problem

- Huge focus in sciences on variable selection
- For example, select the genetic variants x_j associated with a response (phenotype) y
- \bullet Sample size *n* is modest & # genetic variants *p* is huge
- \bullet Large p, small n problem
- Huge literature for dealing with this problem
- Two main approaches:

- Huge focus in sciences on variable selection
- For example, select the genetic variants x_j associated with a response (phenotype) y
- \bullet Sample size *n* is modest & # genetic variants *p* is huge
- \bullet Large p, small n problem
- Huge literature for dealing with this problem
- Two main approaches:
 - 1. Independent Screening

- Huge focus in sciences on variable selection
- For example, select the genetic variants x_j associated with a response (phenotype) y
- \bullet Sample size *n* is modest & # genetic variants *p* is huge
- \bullet Large p, small n problem
- Huge literature for dealing with this problem
- Two main approaches:
 - 1. Independent Screening
 - 2. Penalized estimation/shrinkage

 Test for an association between two variables at a time (e.g, a phenotype & a SNP)

- Test for an association between two variables at a time (e.g, a phenotype & a SNP)
- Repeat this for all possible pairs, getting a large number of p-values

- Test for an association between two variables at a time (e.g, a phenotype & a SNP)
- Repeat this for all possible pairs, getting a large number of p-values
- Choose p-value threshold controlling False Discovery Rate (FDR) - eg Benjamini-Hochberg (BH)

- Test for an association between two variables at a time (e.g, a phenotype & a SNP)
- Repeat this for all possible pairs, getting a large number of p-values
- Choose p-value threshold controlling False Discovery Rate (FDR) - eg Benjamini-Hochberg (BH)
- Get a list of discoveries & hopefully run follow-up studies to verify

Very appealing in its simplicity

- » Very appealing in its simplicity
- >>> Very widely used

- » Very appealing in its simplicity
- Very widely used
- Many false positives & negatives; for sparse data false negatives huge problem

- Very appealing in its simplicity
- Very widely used
- Many false positives & negatives; for sparse data false negatives huge problem
- Just considering a pair of variables at a time leads to limited insights

Consider the canonical linear regression problem:

$$y_i = x_i'\beta + \epsilon_i, \quad \epsilon_i \sim N(0,\sigma^2),$$

where $x_i = (x_{i1}, ..., x_{ip})' \& \beta = (\beta_1, ..., \beta_p)'$

Consider the canonical linear regression problem:

$$y_i = x_i'\beta + \epsilon_i, \quad \epsilon_i \sim N(0,\sigma^2),$$

where $x_i = (x_{i1}, ..., x_{ip})' \& \beta = (\beta_1, ..., \beta_p)'$

The classical approach is to estimate β using MLE which reduces to the least squares estimator $\hat{\beta} = (X'X)^{-1}X'y$

Consider the canonical linear regression problem:

$$y_i = x'_i \beta + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

where $x_i = (x_{i1}, ..., x_{ip})' \& \beta = (\beta_1, ..., \beta_p)'$

- The classical approach is to estimate β using MLE which reduces to the least squares estimator $\hat{\beta} = (X'X)^{-1}X'y$
- Unfortunately as *p* increases OR x_{ij}s become more correlated OR more sparse, the variance of β blows up

Consider the canonical linear regression problem:

$$y_i = x'_i \beta + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

where $x_i = (x_{i1}, ..., x_{ip})' \& \beta = (\beta_1, ..., \beta_p)'$

- The classical approach is to estimate β using MLE which reduces to the least squares estimator $\hat{\beta} = (X'X)^{-1}X'y$
- Unfortunately as *p* increases OR x_{ij}s become more correlated OR more sparse, the variance of β blows up
- For p > n a unique MLE doesn't exist

Including prior information

We need to include some sort of outside or prior information

Including prior information

- We need to include some sort of outside or prior information
- In a Bayesian approach, we choose a prior probability distribution π(β) characterizing our uncertainty in β prior to observing the current data

Including prior information

- We need to include some sort of outside or prior information
- In a Bayesian approach, we choose a prior probability distribution π(β) characterizing our uncertainty in β prior to observing the current data
- Then, we would use Bayes rule to update the prior with information in the likelihood:

$$\pi(\beta|Y,X) = \frac{\pi(\beta)L(Y|X,\beta)}{\int \pi(\beta)L(Y|X,\beta)d\beta} = \frac{\pi(\beta)L(Y|X,\beta)}{L(Y|X)}$$

where $L(Y|X, \beta)$ is the likelihood & L(Y|X) is the marginal likelihood

Bayes in normal linear regression

Suppose $π(β) = N_p(0, Σ_0)$ & we have a normal linear regression model
Bayes in normal linear regression

- Suppose $π(β) = N_p(0, Σ_0)$ & we have a normal linear regression model
- > Then, the posterior distribution of β has a simple form as

 $\pi(\beta|Y,X) = N_p(\tilde{\beta},V_\beta)$

Bayes in normal linear regression

- Suppose $π(β) = N_p(0, Σ_0)$ & we have a normal linear regression model
- \circledast Then, the posterior distribution of β has a simple form as

$$\pi(\beta|Y,X) = N_p(\tilde{\beta},V_\beta)$$

Posterior covariance V_β = (Σ₀⁻¹ + σ⁻²X'X)⁻¹ combines the two sources of information

Bayes in normal linear regression

- Suppose $π(β) = N_p(0, Σ_0)$ & we have a normal linear regression model
- > Then, the posterior distribution of β has a simple form as

$$\pi(\beta|Y,X) = N_p(\tilde{\beta},V_\beta)$$

- Posterior covariance V_β = (Σ₀⁻¹ + σ⁻²X'X)⁻¹ combines the two sources of information
- ▶ The posterior mean is $\tilde{\beta} = (\sigma^2 \Sigma_0^{-1} + X'X)^{-1} X'Y$, which is a weighted average of 0 and $\hat{\beta} = (X'X)^{-1} X'Y$.

 \bullet We can get the same estimator for β by solving:

$$\tilde{\beta} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (y_i - x'_i \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
$$= \operatorname{argmin}_{\beta} ||Y - X\beta||_2^2 + \lambda ||\beta||_2^2.$$

 \bullet We can get the same estimator for β by solving:

$$\tilde{\beta} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (y_i - x'_i \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
$$= \operatorname{argmin}_{\beta} ||Y - X\beta||_2^2 + \lambda ||\beta||_2^2.$$

Nown as ridge or L2 penalized regression

• We can get the same estimator for β by solving:

$$\tilde{\beta} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (y_i - x'_i \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
$$= \operatorname{argmin}_{\beta} ||Y - X\beta||_2^2 + \lambda ||\beta||_2^2.$$

- Known as ridge or L2 penalized regression
- Dual interpretation as a Bayesian estimator under a Gaussian prior centered at zero & a least squares estimator with a penalty on large coefficients

• We can get the same estimator for β by solving:

$$\tilde{\beta} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (y_i - x'_i \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
$$= \operatorname{argmin}_{\beta} ||Y - X\beta||_2^2 + \lambda ||\beta||_2^2.$$

Known as ridge or L2 penalized regression

ļ

- Dual interpretation as a Bayesian estimator under a Gaussian prior centered at zero & a least squares estimator with a penalty on large coefficients
- Such estimators introduce some bias while reducing the variance a lot to improve mean square error

The above penalized loss function can be generalized as

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} ||Y - X\beta||_2^2 + p_{\lambda}(\beta),$$

where $p_{\lambda}(\beta)$ is a *penalty* term - L2 in the case discussed above

The above penalized loss function can be generalized as

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} ||Y - X\beta||_2^2 + p_{\lambda}(\beta),$$

where $p_{\lambda}(\beta)$ is a *penalty* term - L2 in the case discussed above

 Another very common penalty is L1 - penalizing the sum of absolute values $|\beta_j|$

The above penalized loss function can be generalized as

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} ||Y - X\beta||_2^2 + p_{\lambda}(\beta),$$

where $p_{\lambda}(\beta)$ is a *penalty* term - L2 in the case discussed above

- Another very common penalty is L1 penalizing the sum of absolute values |β_j|
- Lasso & the resulting estimator has a Bayesian interpretation under a double exponential (Laplace) prior

The above penalized loss function can be generalized as

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} ||Y - X\beta||_{2}^{2} + p_{\lambda}(\beta),$$

where $p_{\lambda}(\beta)$ is a *penalty* term - L2 in the case discussed above

- Another very common penalty is L1 penalizing the sum of absolute values |β_j|
- Lasso & the resulting estimator has a Bayesian interpretation under a double exponential (Laplace) prior
- \bullet $\tilde{\beta}$ is sparse & contains exact zeros values

There is a HUGE literature proposing many different penalties

- There is a HUGE literature proposing many different penalties
- Adaptive Lasso, fused Lasso, elastic net, etc etc

- There is a HUGE literature proposing many different penalties
- Adaptive Lasso, fused Lasso, elastic net, etc etc
- In general, methods only produce a sparse point estimate & are dangerous scientifically

- There is a HUGE literature proposing many different penalties
- » Adaptive Lasso, fused Lasso, elastic net, etc etc
- In general, methods only produce a sparse point estimate & are dangerous scientifically
- Many errors in interpreting the zero vs non-zero elements

- There is a HUGE literature proposing many different penalties
- Adaptive Lasso, fused Lasso, elastic net, etc etc
- In general, methods only produce a sparse point estimate & are dangerous scientifically
- Many errors in interpreting the zero vs non-zero elements
- Parallel Bayesian literature on shrinkage priors horseshoe, generalized double Pareto, Dirichlet-Laplace, etc

Subscription $\pi(\beta)$ for the high-dimensional vector of coefficients?

- Subscription $\pi(\beta)$ for the high-dimensional vector of coefficients?
- Nost commonly local-global scale mixture of Gaussians,

$$\beta_j \stackrel{iid}{\sim} N(0, \psi_j \lambda), \quad \psi_j \sim f, \quad \lambda \sim g,$$

 ψ_i =local scale, λ = global scale

- Appropriate prior $\pi(\beta)$ for the high-dimensional vector of coefficients?
- Most commonly local-global scale mixture of Gaussians,

$$\beta_j \stackrel{iid}{\sim} N(0, \psi_j \lambda), \quad \psi_j \sim f, \quad \lambda \sim g,$$

 ψ_i =local scale, λ = global scale

▶ Choose $\lambda \approx 0 \& \psi_i$ to have many small values with some large

- Appropriate prior $\pi(\beta)$ for the high-dimensional vector of coefficients?
- Most commonly local-global scale mixture of Gaussians,

$$\beta_j \stackrel{iid}{\sim} N(0, \psi_j \lambda), \quad \psi_j \sim f, \quad \lambda \sim g,$$

 ψ_j =local scale, λ = global scale

- \bullet Choose $\lambda \approx 0 \& \psi_j$ to have many small values with some large
- Different choices of *f*, *g* lead to different priors in the literature -Bayesian Lasso is a poor choice, as horseshoe, gDP, DL etc have much better theoretical & practical performance

- Appropriate prior $\pi(\beta)$ for the high-dimensional vector of coefficients?
- Most commonly local-global scale mixture of Gaussians,

$$\beta_j \stackrel{iid}{\sim} N(0, \psi_j \lambda), \quad \psi_j \sim f, \quad \lambda \sim g,$$

 ψ_i =local scale, λ = global scale

 \bullet Choose $\lambda \approx 0 \& \psi_i$ to have many small values with some large

- Different choices of *f*, *g* lead to different priors in the literature -Bayesian Lasso is a poor choice, as horseshoe, gDP, DL etc have much better theoretical & practical performance
- Literature on scalable computation using MCMC e.g, Johndrow et al arXiv:1705.00841

- Appropriate prior $\pi(\beta)$ for the high-dimensional vector of coefficients?
- Most commonly local-global scale mixture of Gaussians,

$$\beta_j \stackrel{iid}{\sim} N(0, \psi_j \lambda), \quad \psi_j \sim f, \quad \lambda \sim g,$$

 ψ_i =local scale, λ = global scale

 \bullet Choose $\lambda \approx 0 \& \psi_j$ to have many small values with some large

- Different choices of *f*, *g* lead to different priors in the literature -Bayesian Lasso is a poor choice, as horseshoe, gDP, DL etc have much better theoretical & practical performance
- Literature on scalable computation using MCMC e.g, Johndrow et al arXiv:1705.00841
- Datta & Dunson (20)16, *Biometrika*) develop such approaches for huge dimensional sparse count data arising in genomics

 Bayesian approach provides a full posterior π(β|Y, X) characterizing uncertainty instead of just a sparse point estimate β

- Bayesian approach provides a full posterior π(β|Y, X) characterizing uncertainty instead of just a sparse point estimate β̂
- By using MCMC, we can easily get credible bands (Bayesian confidence intervals) for not only the β_j 's but also for any functional of interest

- Bayesian approach provides a full posterior π(β|Y, X) characterizing uncertainty instead of just a sparse point estimate β̂
- By using MCMC, we can easily get credible bands (Bayesian confidence intervals) for not only the β_j's but also for any functional of interest
- Relatively straightforward to incorporate extensions to allow hierarchical dependence structures, multivariate responses, missing data, etc

- Bayesian approach provides a full posterior π(β|Y, X) characterizing uncertainty instead of just a sparse point estimate β̂
- By using MCMC, we can easily get credible bands (Bayesian confidence intervals) for not only the β_j's but also for any functional of interest
- Relatively straightforward to incorporate extensions to allow hierarchical dependence structures, multivariate responses, missing data, etc
- However, there is a need for approaches that are

- Bayesian approach provides a full posterior π(β|Y, X) characterizing uncertainty instead of just a sparse point estimate β̂
- By using MCMC, we can easily get credible bands (Bayesian confidence intervals) for not only the β_j's but also for any functional of interest
- Relatively straightforward to incorporate extensions to allow hierarchical dependence structures, multivariate responses, missing data, etc
- However, there is a need for approaches that are
 - 1. More robust to parametric assumptions,

- Bayesian approach provides a full posterior π(β|Y, X) characterizing uncertainty instead of just a sparse point estimate β̂
- By using MCMC, we can easily get credible bands (Bayesian confidence intervals) for not only the β_j's but also for any functional of interest
- Relatively straightforward to incorporate extensions to allow hierarchical dependence structures, multivariate responses, missing data, etc
- However, there is a need for approaches that are
 - 1. More robust to parametric assumptions,
 - 2. easily computationally scalable to huge datasets

- Bayesian approach provides a full posterior π(β|Y, X) characterizing uncertainty instead of just a sparse point estimate β̂
- By using MCMC, we can easily get credible bands (Bayesian confidence intervals) for not only the β_j's but also for any functional of interest
- Relatively straightforward to incorporate extensions to allow hierarchical dependence structures, multivariate responses, missing data, etc
- However, there is a need for approaches that are
 - 1. More robust to parametric assumptions,
 - 2. easily computationally scalable to huge datasets
 - 3. provide a way to deal with intractable $p \gg n$ problems

Focus: screening for differentially methylated CpG sites

- Focus: screening for differentially methylated CpG sites
- High-throughput arrays are routinely used eg., Illumina Human Methylation450 Beadchip

- ✤ Focus: screening for differentially methylated CpG sites
- High-throughput arrays are routinely used eg., Illumina Human Methylation450 Beadchip
- Measurements in [0,1] interval, ranging from no methylation to fully methylated

- Focus: screening for differentially methylated CpG sites
- High-throughput arrays are routinely used eg., Illumina Human Methylation450 Beadchip
- Measurements in [0,1] interval, ranging from no methylation to fully methylated
- Representative data from the Cancer Genome Atlas

- Focus: screening for differentially methylated CpG sites
- High-throughput arrays are routinely used eg., Illumina Human Methylation450 Beadchip
- Measurements in [0,1] interval, ranging from no methylation to fully methylated
- Representative data from the Cancer Genome Atlas
- Clearly distributions exhibit multimodality & skewness

Comments

We observe data like this at a HUGE number of CpG sites

Comments

- We observe data like this at a HUGE number of CpG sites
- Nany distributions share common attributes modes etc
Comments

- We observe data like this at a HUGE number of CpG sites
- Nany distributions share common attributes modes etc
- Can accurately characterize the methylation densities using a kernel mixture model

Comments

- We observe data like this at a HUGE number of CpG sites
- Many distributions share common attributes modes etc
- Can accurately characterize the methylation densities using a kernel mixture model
- Key idea: use the same kernels across the sites & groups <u>but</u> allow the weights to vary

Comments

- We observe data like this at a HUGE number of CpG sites
- Many distributions share common attributes modes etc
- Can accurately characterize the methylation densities using a kernel mixture model
- Key idea: use the same kernels across the sites & groups <u>but</u> allow the weights to vary
- SHARed Kernel (SHARK) method (Lock & Dunson, 2015)

• The methylation density at site *j* in group *g* is f_{ig} :

$$f_{jg}(y) = \sum_{h=1}^{k} \pi_{jgh} \mathcal{K}(y; \theta_h)$$

• The methylation density at site *j* in group *g* is f_{jg} :

$$f_{jg}(y) = \sum_{h=1}^{k} \pi_{jgh} \mathcal{K}(y; \theta_h)$$

$$\Rightarrow \pi_{jg} = (\pi_{jg1}, \dots, \pi_{jgk})' \text{ are weights specific to } j, g$$

• The methylation density at site *j* in group *g* is f_{jg} :

$$f_{jg}(y) = \sum_{h=1}^{k} \pi_{jgh} \mathcal{K}(y; \theta_h)$$

$$\pi_{jg} = (\pi_{jg1}, \dots, \pi_{jgk})' \text{ are weights specific to } j, g$$

$$\mathcal{K}(y; \theta_h) \text{ is a shared kernel (truncated normal in this case)}$$

• The methylation density at site *j* in group *g* is f_{jg} :

$$f_{jg}(y) = \sum_{h=1}^{k} \pi_{jgh} \mathcal{K}(y; \theta_h)$$

- $\pi_{jg} = (\pi_{jg1}, ..., \pi_{jgk})'$ are weights specific to j, g
- $\mathcal{K}(y;\theta_h)$ is a *shared* kernel (truncated normal in this case)
- We estimate the above kernels in a first stage relying on a subsample of 500 sites - only need 9 kernels

High-dimensional data (big p)

We put a simple hierarchical prior on π_{jg} - Dirichlet in each group

- We put a simple hierarchical prior on π_{jg} Dirichlet in each group
- Prior probability random CpG site is differentially methylated given a beta hyperprior

- We put a simple hierarchical prior on π_{jg} Dirichlet in each group
- Prior probability random CpG site is differentially methylated given a beta hyperprior
- Automatically adjusts for multiple testing error, controlling FDR

- We put a simple hierarchical prior on π_{jg} Dirichlet in each group
- Prior probability random CpG site is differentially methylated given a beta hyperprior
- Automatically adjusts for multiple testing error, controlling FDR
- Computation very fast Gibbs & parallelizable Gibbs sampler

- We put a simple hierarchical prior on π_{jg} Dirichlet in each group
- Prior probability random CpG site is differentially methylated given a beta hyperprior
- Automatically adjusts for multiple testing error, controlling FDR
- Computation very fast Gibbs & parallelizable Gibbs sampler
- Theory support, including under misspecification

Histogram of pr(H_{0m}|X)

 Illustrate using n = 597 breast cancer samples & 21,986 CpG sites from TGGA

- Illustrate using n = 597 breast cancer samples & 21,986 CpG sites from TGGA
- Focus on testing difference between basal-like (112) and not (485) at each site

- Illustrate using n = 597 breast cancer samples & 21,986 CpG sites from TGGA
- Focus on testing difference between basal-like (112) and not (485) at each site
- Global proportion of no difference was 0.821

- Illustrate using n = 597 breast cancer samples & 21,986 CpG sites from TGGA
- Focus on testing difference between basal-like (112) and not (485) at each site
- Global proportion of no difference was 0.821
- \bullet Distribution of posterior probabilities of H_{0m} shown above

Discussion & Comparisons

 Of 2117 CpG sites with pr(H_{0m}) < 0.01, 1256 have a significant negative association with gene expression (p < 0.01 spearman's rank correlation)

Discussion & Comparisons

- Of 2117 CpG sites with pr(H_{0m}) < 0.01, 1256 have a significant negative association with gene expression (p < 0.01 spearman's rank correlation)
- Methylation gives potential mechanistic explanation for differences in gene transcription levels

Discussion & Comparisons

- Of 2117 CpG sites with pr(H_{0m}) < 0.01, 1256 have a significant negative association with gene expression (p < 0.01 spearman's rank correlation)
- Methylation gives potential mechanistic explanation for differences in gene transcription levels
- We compared power of our approach with alternatives

 Shared kernel approach can be applied to very complex phenotypes

- Shared kernel approach can be applied to very complex phenotypes
- As long as a mixture model can be defined for the phenotype distribution under one condition

- Shared kernel approach can be applied to very complex phenotypes
- As long as a mixture model can be defined for the phenotype distribution under one condition
- I'll illustrate briefly using brain connectome phenotypes

- Shared kernel approach can be applied to very complex phenotypes
- As long as a mixture model can be defined for the phenotype distribution under one condition
- I'll illustrate briefly using brain connectome phenotypes
- For each individual *i*, we extract a structural connectome X_i from MRI data

- Shared kernel approach can be applied to very complex phenotypes
- As long as a mixture model can be defined for the phenotype distribution under one condition
- I'll illustrate briefly using brain connectome phenotypes
- For each individual *i*, we extract a structural connectome X_i from MRI data
- Then, X_{i[u,v]} = 1 if there is any connection between regions u & v for individual i, and X_{i[u,v]} = 0 otherwise

Kernel for characterizing variation in brain network data across individuals: X_i ~ P, P =?.

- Kernel for characterizing variation in brain network data across individuals: X_i ~ P, P =?.
- For each brain region (r) & component (h), assign an individual-specific score η_{ih[r]}

- Kernel for characterizing variation in brain network data across individuals: X_i ~ P, P =?.
- For each brain region (r) & component (h), assign an individual-specific score η_{ih[r]}
- Characterize variation among individuals with:

$$\mathsf{logit}\{\mathsf{pr}(X_{i[u,v]}=1)\} = \mu_{[u,v]} + \sum_{h=1}^{K} \lambda_{ih} \eta_{ih[u]} \eta_{ih[v]}, \quad \theta_i = \{\lambda_{ih}, \eta_{ir}\} \sim Q.$$

- Kernel for characterizing variation in brain network data across individuals: X_i ~ P, P =?.
- For each brain region (r) & component (h), assign an individual-specific score η_{ih[r]}
- Characterize variation among individuals with:

$$\mathsf{logit}\{\mathsf{pr}(X_{i[u,v]}=1)\} = \mu_{[u,v]} + \sum_{h=1}^{K} \lambda_{ih} \eta_{ih[u]} \eta_{ih[v]}, \quad \theta_i = \{\lambda_{ih}, \eta_{ir}\} \sim Q.$$

Using Bayesian nonparametrics, allow Q (& P) to be unknown

- Kernel for characterizing variation in brain network data across individuals: X_i ~ P, P =?.
- For each brain region (r) & component (h), assign an individual-specific score η_{ih[r]}
- Characterize variation among individuals with:

$$\mathsf{logit}\{\mathsf{pr}(X_{i[u,v]}=1)\} = \mu_{[u,v]} + \sum_{h=1}^{K} \lambda_{ih} \eta_{ih[u]} \eta_{ih[v]}, \quad \theta_i = \{\lambda_{ih}, \eta_{ir}\} \sim Q.$$

Using Bayesian nonparametrics, allow Q (& P) to be unknown

- Kernel for characterizing variation in brain network data across individuals: X_i ~ P, P =?.
- For each brain region (r) & component (h), assign an individual-specific score η_{ih[r]}
- Characterize variation among individuals with:

$$\mathsf{logit}\{\mathsf{pr}(X_{i[u,v]}=1)\} = \mu_{[u,v]} + \sum_{h=1}^{K} \lambda_{ih} \eta_{ih[u]} \eta_{ih[v]}, \quad \theta_i = \{\lambda_{ih}, \eta_{ir}\} \sim Q.$$

Using Bayesian nonparametrics, allow Q (& P) to be unknown

 Based on this framework, we can cluster individuals in terms of their brain structure

- Based on this framework, we can cluster individuals in terms of their brain structure
- We can also *test* for relationships between brain structure & traits/genotype

- Based on this framework, we can cluster individuals in terms of their brain structure
- We can also *test* for relationships between brain structure & traits/genotype
- Just allow the weights in our mixture model to vary with traits/genotypes with fixed kernels

- Based on this framework, we can cluster individuals in terms of their brain structure
- We can also *test* for relationships between brain structure & traits/genotype
- Just allow the weights in our mixture model to vary with traits/genotypes with fixed kernels
- Allows scientific inference of global & local group differences in network structures with traits

- Based on this framework, we can cluster individuals in terms of their brain structure
- We can also *test* for relationships between brain structure & traits/genotype
- Just allow the weights in our mixture model to vary with traits/genotypes with fixed kernels
- Allows scientific inference of global & local group differences in network structures with traits
- Adjusts for multiple testing reducing false positives

Application to creativity

Results from local testing

 Apply model to brain networks of 36 subjects (19 with high creativity, 17 with low creativity—measured via CCI).
Application to creativity

Results from local testing

- Apply model to brain networks of 36 subjects (19 with high creativity, 17 with low creativity—measured via CCI).
- ▶ $\hat{pr}(H_1 | data) = 0.995.$

Application to creativity

Results from local testing

- Apply model to brain networks of 36 subjects (19 with high creativity, 17 with low creativity—measured via CCI).
- ▶ $\hat{pr}(H_1 | data) = 0.995.$
- Highly creative individuals have significantly > inter-hemispheric connections.

Application to creativity

Results from local testing

- Apply model to brain networks of 36 subjects (19 with high creativity, 17 with low creativity—measured via CCI).
- ▶ $\hat{pr}(H_1 | data) = 0.995.$
- Highly creative individuals have significantly > inter-hemispheric connections.
- Differences in <u>frontal lobe</u> consistent with recent fMRI studies analyzing regional activity in isolation.

 Idea: don't allow for all the dependencies implied by the joint Bayesian model

- Idea: don't allow for all the dependencies implied by the joint Bayesian model
- *Cutting* dependence useful for computational scalability & robustness to model misspecification

- <u>Idea</u>: don't allow for all the dependencies implied by the joint Bayesian model
- *Cutting* dependence useful for computational scalability & robustness to model misspecification
- As an example, suppose we have a phenotype y_i and SNPs x_i = (x_{i1},..., x_{ip})'

- <u>Idea</u>: don't allow for all the dependencies implied by the joint Bayesian model
- *Cutting* dependence useful for computational scalability & robustness to model misspecification
- As an example, suppose we have a phenotype y_i and SNPs x_i = (x_{i1},..., x_{ip})'
- We want to screen for SNPs x_{ij} that are significantly related with y_i in a nonparametric manner

- <u>Idea</u>: don't allow for all the dependencies implied by the joint Bayesian model
- *Cutting* dependence useful for computational scalability & robustness to model misspecification
- As an example, suppose we have a phenotype y_i and SNPs x_i = (x_{i1},..., x_{ip})'
- We want to screen for SNPs x_{ij} that are significantly related with y_i in a nonparametric manner
- We also want to account for dependence in the many different tests

 \gg Start with kernel mixture model for marginal distribution of y_i :

$$f(y) = \sum_{h=1}^{k} \pi_h \mathcal{K}(y; \theta_h).$$

 \gg Start with kernel mixture model for marginal distribution of y_i :

$$f(y) = \sum_{h=1}^{k} \pi_h \mathcal{K}(y; \theta_h).$$

This implies $y_i ~ \mathcal{K}(\theta_{c_i})$, pr(c_i = h) = π_h, with c_i ∈ {1,..., k} a cluster index

$$f(y) = \sum_{h=1}^{k} \pi_h \mathcal{K}(y; \theta_h).$$

- ▶ This implies $y_i \sim \mathcal{K}(\theta_{c_i})$, pr($c_i = h$) = π_h , with $c_i \in \{1, ..., k\}$ a cluster index
- Run an MCMC algorithm to get samples of the unknown parameters & cluster indices

$$f(y) = \sum_{h=1}^{k} \pi_h \mathcal{K}(y; \theta_h).$$

- ▶ This implies $y_i \sim \mathcal{K}(\theta_{c_i})$, pr($c_i = h$) = π_h , with $c_i \in \{1, ..., k\}$ a cluster index
- Run an MCMC algorithm to get samples of the unknown parameters & cluster indices
- For each SNP, define a simple Bayesian test for association between x_{ij} & c_i

$$f(y) = \sum_{h=1}^{k} \pi_h \mathcal{K}(y; \theta_h).$$

- ▶ This implies $y_i \sim \mathcal{K}(\theta_{c_i})$, pr($c_i = h$) = π_h , with $c_i \in \{1, ..., k\}$ a cluster index
- Run an MCMC algorithm to get samples of the unknown parameters & cluster indices
- For each SNP, define a simple Bayesian test for association between x_{ij} & c_i
- Include common parameters across these tests eg, probability of an association in a random SNP.

$$f(y) = \sum_{h=1}^{k} \pi_h \mathcal{K}(y; \theta_h).$$

- ▶ This implies $y_i \sim \mathcal{K}(\theta_{c_i})$, pr($c_i = h$) = π_h , with $c_i \in \{1, ..., k\}$ a cluster index
- Run an MCMC algorithm to get samples of the unknown parameters & cluster indices
- For each SNP, define a simple Bayesian test for association between x_{ii} & c_i
- Include common parameters across these tests eg, probability of an association in a random SNP.
- Marginalize over MCMC samples of {c_i} to take into account uncertainty

 Algorithm is very fast & scalable to huge p + trivially parallelizable

- Algorithm is very fast & scalable to huge p + trivially parallelizable
- Has strong frequentist theoretical guarantees comparable to state-of-the-art

- Algorithm is very fast & scalable to huge p + trivially parallelizable
- Has strong frequentist theoretical guarantees comparable to state-of-the-art
- Competitive with the state of the art in performance

- Algorithm is very fast & scalable to huge p + trivially parallelizable
- Has strong frequentist theoretical guarantees comparable to state-of-the-art
- Competitive with the state of the art in performance
- Particularly good at detecting complex distributional changes

Histogram of Posterior Probabilities

Applied approach to GEUVADIS cis-eQTL data set

- » Applied approach to GEUVADIS cis-eQTL data set
- Messenger RNA & microRNA on lymphoblastoid cell line samples from 462 individuals in 1000 genomes

- ✤ Applied approach to GEUVADIS cis-eQTL data set
- Messenger RNA & microRNA on lymphoblastoid cell line samples from 462 individuals in 1000 genomes
- 38 million Single Nucleotide Polymorphisms (SNPs)

- Applied approach to GEUVADIS cis-eQTL data set
- Messenger RNA & microRNA on lymphoblastoid cell line samples from 462 individuals in 1000 genomes
- 38 million Single Nucleotide Polymorphisms (SNPs)
- gene E2F2 (y_i) key role in control of cell cycle & is multimodal

- Applied approach to GEUVADIS cis-eQTL data set
- Messenger RNA & microRNA on lymphoblastoid cell line samples from 462 individuals in 1000 genomes
- 38 million Single Nucleotide Polymorphisms (SNPs)
- w gene E2F2 (y_i) key role in control of cell cycle & is multimodal
- 0.4% of $pr(H_{0j}) < 0.05$ picking up differences in distribution other methods miss

High-dimensional data (big p)

Brief intro to Bayesian methods for large p problems

- \bullet Brief intro to Bayesian methods for large p problems
- Highlighted some recent work using shared kernels &/or modularization

- \bullet Brief intro to Bayesian methods for large p problems
- Highlighted some recent work using shared kernels &/or modularization
- There is a very rich literature & increasing focus on scalability

- \bullet Brief intro to Bayesian methods for large p problems
- Highlighted some recent work using shared kernels &/or modularization
- There is a very rich literature & increasing focus on scalability
- One important direction is to obtain methods for assessing when we are attempting inferences on too fine of a scale for our data

- Brief intro to Bayesian methods for large p problems
- Highlighted some recent work using shared kernels &/or modularization
- There is a very rich literature & increasing focus on scalability
- One important direction is to obtain methods for assessing when we are attempting inferences on too fine of a scale for our data
- Ideally can then automatically coarsen the scale to answer solvable questions - e.g., Peruzzi & Dunson (2018)

Some references - large n Bayes

- Miller J, Dunson D (2018) Robust Bayesian inference via coarsening. Journal of the American Statistical Association, Online.
- Srivastava S, Li C, Dunson DB (2018) Scalable Bayes via barycenter in Wasserstein space. *Journal of Machine Learning Research* 19(1):312-346.
- Li C, Srivastava S, Dunson DB (2017) Simple, scalable and accurate posterior interval estimation. *Biometrika* 104(3):665-680.
- Duan LL, Johndrow JE, Dunson DB (2018) Calibrated data augmentation for scalable Markov chain Monte Carlo. *Journal of Machine Learning Research*, to appear.
- Minsker S, Srivastava S, Lin L, Dunson DB (2017) Robust and scalable Bayes via a median of subset posterior measures. *Journal of Machine Learning Research* 18(1):4488-527.
- Johndrow JE, Smith A, Pillai N, Dunson DB (2018) MCMC for imbalanced categorical data. *Journal of the American Statistical* Association, Online.

Some references - large p Bayes

- Armagan A, Dunson DB, Lee J (2013) Generalized double Pareto shrinkage. *Statistica Sinica* 23:119.
- Bhattacharya A, Pati D, Pillai NS, Dunson D (2015) Dirichlet-Laplace priors for optimal shrinkage. JASA 110:1479-90.
- Chen Y, Dunson DB (2017) Modular Bayes screening for high-dimensional predictors. *Biometrika*, under revision.
- Datta J, Dunson DB (2016) Bayesian inferences on quasi-sparse count data. *Biometrika* 103:971-83.
- Durante D, Dunson DB (2018) Bayesian inference and testing of group differences in brain networks. *Bayesian Analysis* 13:29-58.
- Lee K, Lin L, Dunson D (2018) Maximum pairwise Bayes factors for covariance structure testing. arXiv:1809.03105
- Lock EF, Dunson DB (2015) Shared kernel Bayesian screening. Biometrika 102:829-842.

Peruzzi M, Dunson DB (2018) Bayesian modular and multiscale High-dimegiped storking arXiv:1809.05935.

Take home message: Bayes is scalable & MCMC is scalable

- Take home message: Bayes is scalable & MCMC is scalable
- But in big data & dimensionality problems we can't necessarily be naive & use off the shelf algorithms

- Take home message: Bayes is scalable & MCMC is scalable
- <u>But</u> in big data & dimensionality problems we can't necessarily be naive & use off the shelf algorithms
- We need to think carefully about how to exploit parallel processing & accurate approximations to reduce bottlenecks

- Take home message: Bayes is scalable & MCMC is scalable
- <u>But</u> in big data & dimensionality problems we can't necessarily be naive & use off the shelf algorithms
- We need to think carefully about how to exploit parallel processing & accurate approximations to reduce bottlenecks
- Also useful to take a step away from the fully Bayes framework by using modularization, composite likelihoods, c-Bayes, etc

- Take home message: Bayes is scalable & MCMC is scalable
- <u>But</u> in big data & dimensionality problems we can't necessarily be naive & use off the shelf algorithms
- We need to think carefully about how to exploit parallel processing & accurate approximations to reduce bottlenecks
- Also useful to take a step away from the fully Bayes framework by using modularization, composite likelihoods, c-Bayes, etc
- Such generalized Bayes methods can have improved computational performance & robustness