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Stability of Black-Box ML
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Artificial Intelligence/Mach
Desired Properties for Appl

DESIRED PROPERTIES CAUSAL INFERENCE FRAMEWORK

Goal: learn model of how the world works
> Impact of interventions can be context-specific

Sta biIity/Robustness > Model maps contexts and interventions to outcomes
o Formal language to separate out correlates and causes

Interpretability

Transferability

Ideal causal model is by definition stable, interpretable

Fairness/Non-discrimination L _ L
Transferability: straightforward for new context dist’n

o H 1
Human-like” Al Fairness: Many aspects of discrimination relate to

> Reasonable decisions in never- correlation v. causation
experienced situations ° Performar?ce may depend on phy§ical and mental ability,
psychological factors (e.g. risk taking)

o Gender and race may be correlated with factors that shift
these distributions, relatively limited direct causal effects



Artificial Intelligence/Machine Learning
Desired Properties for Applications

DESIRED PROPERTIES CAUSAL INFERENCE FRAMEWORK

Goal: learn model of how the world works
° Impact of interventions can be context-specific

Interpretability

Sta biIity/Robustness > Model maps contexts and interventions to outcomes
T : >_Formal language to separate out correlates and causes
ransre - e .
In practice, challenges remain, e.g. due to: nterpretable

Fairnes L
ntext dist’'n
Lack of quasi-experimental data for estimation; olate to
Unobserved contexts/confounders or insufficient data
to control for observed confounders;
tors that shift

Analyst’s lack of knowledge about model causal effects

ental ability,




ﬁE 5 #  Artificial Intelligence and
C. E Counterfactual Estimation

)

i1

Artificial intelligence
o Select among alternative choices

o Explicit or implicit model of payoffs from
alternatives

o Learn from past data
o |nitial stages of learning have limited data

° Inside the Al is a statistician performing
counterfactual reasoning

o Statistician should use best performing
techniques (efficiency, bias)

Simple example: contextual bandit



Estimation is challenging: Contextual Bandit example

e Inherent bias in estimation due to adaptive assignment of contexts to armes.
o context assigned to arm with highest reward sample or confidence bound
o creates systematically unbalanced data




Counterfactual
Inference
Approaches

“Program
evaluation”,
“treatment effect
estimation”

What was the impact of the policy?
> Minimum wage, training program, class
size change, etc.

Did the advertising campaign work?
What was the ROI?

Do get-out-the vote campaigns work?

What is an optimal policy assigning
workers to training programs?



Counterfactual
Inference
Approaches

“Program
evaluation”,
“treatment effect
estimation”

Goal: estimate the impact of interventions or
treatment assignment policies

o Low dimensional intervention

Estimands
o Average effect

o Heterogeneous effects
o Optimal policy

Confidence intervals

Designs that enable identification and
estimation of these effects

o (Alternative treatments observed in historical data in
relevant contexts)

° Randomized experiments

o “Natural” experiments (Unconf., 1V)
o Regression discontinuity

° Difference-in-difference

° Longitudinal data

> Randomized and natural experiments in social
network/settings w/ interference



Treatment Effect
Estimation:
Designs

Regression Discontinuity Design

Mbiti & Lucas (2013) estimate
impact of secondary school
quality on student achievement
in Kenya.

Discontinuity: cut-off on the
primary exit exam required to
get into better secondary
schools
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Treatment Effect
Estimation:
Designs

Difference-in-Difference Designs

Athey and Stern (2002) look at
the impact of Enhanced 911
(automated address lookup) on
health outcomes for cardiac
patients

Counties adopt at different
times; estimate time trend
using other counties to
determine counterfactual
outcomes in the absence of
adoption

Predicted Value of HINDEX

Figure C: Effect of Time Before and After E911
Adoption on HINDEX
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Counterfactual
Inference
Approaches

“Structural
estimation”,
“Generative

Models” &
Counterfactuals

What would happen to firm demand if
price increases?

What would happen to prices,
consumption, consumer welfare, and
firm profits if two firms merge?

What would happen to platform
revenue, advertiser profits and
consumer welfare if Google switched
from a generalized second price
auction to a Vickrey auction?



Counterfactual
Inference
Approaches

“Structural
estimation”,
“Generative
Models” &

Counterfactuals

Goal: estimate impact on welfare/profits of participants in
alternative counterfactual regimes

o Counterfactual regimes may not have ever been observed in
relevant contexts

> Need behavioral model of participants

Still need designs that enable identification and estimation,
now of preference parameters

o E.g. need to see changes in prices to understand price sensitivity

Use “revealed preference” to uncover
preference parameters

Rely on behavioral model to estimate behavior
in different circumstances

> Also may need to specify equilibrium selection

Dynamic structural models

o Learn about value function from agent choices in
different states

o See Igami (2018) who relates to Al



Counterfactual
Inference
Approaches

“Structural
estimation”,
“Generative

Models” &
Counterfactuals

Advertiser Profit Maximization Example
o Bidder in search advertising auctions has value-per-click v

o Q(b) is the share of available ad clicks per search from bidding b per
click; upward sloping

o Bidder profit per search:
Q(b) - (v—>b)
o Bidder first order condition:
Q(b)

Q'(b)
Inferring preferences (value per click) from data

o Analyst estimates Q() from historical log data

o For each advertiser, can infer the value v that rationalizes bid (satisfies
FOC)

v=>b+

Counterfactuals

o With knowledge of advertiser values and behavioral model, can solve for
new equilibria

o Changing auction format
o Changing quality scores

See: Athey and Nekipelov (2012)



Counterfactual
Inference
Approaches

Dynamic Structural
Estimation

Inverse
Reinforcement
Learning

Single Agent Decision Problem
o Rust (1987) studies problem of a decision-maker replacing bus engines
o Analogous to a grand master playing chess

o Agent maximizes discounted sum of profits

o Using principles of dynamic programming, Bellman equation is:

V(s) = max 7n(s',s;0,e) + SV (s")
s'eF(s)

> Policy function :
o(s;0) = argmaxmn(s’,s; 0,¢€) + SV (s")
s'eF(s)
o Assume stochastic shock € to flow profits

Solution: Nested fixed point

o Quter loop: Optimize likelihood function for 8, where data are
(state,action) pairs and model predicts optimal actions as function of 8
° Inner loop:

° @Given @, solve for value function by iterating over Bellman’s equation

o Evaluate policy function given value function, and evaluate likelihood

See: Igami (2018) who develops relationship between this and
Bonanza algorithm; also analysis of AlphaGo algorithm relative to
Hotz and Miller (1993)



Counterfactual
Inference
Approaches

Dynamic Structural
Estimation

Inverse
Reinforcement
Learning

What can we learn from decades of methodological and empirical work
in economics, that is relevant for Al?

(e]

(e]

(e]

(e]

Applications to human or firm behavior are challenging
Conceptual framework has been clear from 80s and 90s

Big problem: not enough training data, and not enough knowledge about
game payoffs to create artificial training data

Economics has some insights to help in data-poor environments...

o Use as much structure as is known, carefully examine functional forms for how they extrapolate
> Think about independence assumptions and biases that might arise from diff’t training data

o Take behavioral models seriously to draw better inference from agent behavior

o See Igami (2018) for some more discussion

How can recent advances in Al help solve economic problems?

(e]

New algorithms of past 10-15 years in ML/AIl focus on computational
performance and problems with large state spaces

o Coupled with games that can be played by computers with large number of repetitions,
generating very large datasets

o The rules are clear, so possible to test different strategies against one another

o The analyst knows the mapping from final state to payoffs, just doesn’t know the value function
at intermediate states

In economic problems
o Computational advances definitely help in problems with large state spaces...

o But the analyst doesn’t know the per-period payoff function, and thus doesn’t know enough
about the game to simulate play and know what the final payoffs are.

o Can only do that given parameter values.



Counterfactual
Inference
Approaches

“Causal discovery”,
“Learning the causal
graph”

Goal: uncover the causal structure of a
system
> Many observed variables

> Analyst believes that there is an underlying
structure where some variables are causes of
others, e.g. a physical stimulus leads to biological
responses

Focus on ways to test for causal
relationships

Applications
> Understanding software systems
° Biological systems



Counterfactual
Inference
Approaches

Recently, literatures
have started coming
together

Multiple literatures on causality within
economics, statistics, and computer science

Different ways to represent equivalent
concepts

Common themes: very important to have
formal language to represent concepts

Recent literatures: Bring causal reasoning,
statistical theory and modern machine
learning algorithms together to solve
important problems



Preview of Themes

Causal inference v. supervised learning Insights from statistics/econometrics
o Supervised learning: can evaluate in test set in o Consider identification, then estimation
model-free way > Could you solve problem with infinite data?
o Causal inference > Design-based approach
° Parameter estimation-parameter not observed in test set o Estimation: scaled up with many experiments
o Chtqngt?c_objective function, e.g. consistent parameter o Regularization induces omitted variable bias
estimation

o Omitted variables challenge causal inference,

o Can estimate objective (MSE of parameter), but often interpretability, fairness

requires maintained assumptions

o Often sampling variation matters even in large data sets o Semi-parametric efficiency theory can be
> Requires theoretical assumptions and domain knowledge helpful, brings insights not commonly exploited
in ML

o Tune for counterfactuals: distinct from tuning for fit, also
different counterfactuals select different models > Cross-fitting/out of bag estimation of nuisance parameters

> Orthogonal moments/double robustness
> Use best possible statistician inside bandits/Al agents

> Exploit structure of problem carefully for better
counterfactual predictions

> Black-box algorithms reserved for nuisance parameters



Estimating ATE under
Unconfoundedness

SOLVING CORRELATION V. CAUSALITY BY CONTROLLING FOR
CONFOUNDERS




Setting

Only observational data is available

Analyst has access to data that is sufficient for the part of the information
used to assign units to treatments that is related to potential outcomes

Analyst doesn’t know exact assignment rule and there was some
randomness in assignment

Conditional on observables, we have random assignment
Lots of small randomized experiments

Application: logged tech company data, contextual bandit data



Example: Effect of an Online Ad

Ads are targeted using cookies

User sees car ads because advertiser knows that user visited car
review websites

Cannot simply relate purchases for users who saw an ad and those
who did not:

° Interest in cars is unobserved confounder

Analyst can see the history of websites visited by user
o This is the main source of information for advertiser about user interests



Setup

Assume unconfoundedness/ignorability:
°Y; (1), ¥;(0) L W;|X;

Assume overlap of the propensity score:
p(x) =Pr(W; = 1|X; = x) € (0,1)

Then Rubin shows:
o Sufficient to control for propensity score:

°Y;(1),Y;(0) L W;[p(X;)
o If control for X well, can estimate ATE
° E[Y;(1) = Y;(0)].




Intuition for Most Popular Methods

Control group and treatment group are different in terms of observables

Need to predict cf outcomes for treatment group if they had not been treated

Weighting/Matching: Since assignment is random conditional on X, solve problem by
reweighting control group to look like treatment group in terms of distribution of X

> P.S. weighting/matching: need to estimate p.s., cannot perfectly balance in high
dimensions

Outcome models: Build a model of Y |X=x for the control group, and use the model to
predict outcomes for x’s in treatment group

° |If your model is wrong, you will predict incorrectly

Doubly robust: methods that work if either p.s. model OR model Y|X=x is correct



Treated
observations have
higher X’s on
average




Reweighting control
observations with
high X’s

adjusts for
difference




Outcome modeling
adjusts for
differences in X o ®




Reweighting control
observations with high
X's

AND using outcome
modeling is doubly
robust

With correct
reweighting, don’t
need to adjust
outcomes

With outcome
adjustments, don’t
need to reweight

Y




Using Supervised ML
to Estimate ATE Under
Unconfoundedness

Method I:

Propensity score
weighting or KNN on
propensity score

o LASSO to estimate propensity score; e.g.
McCaffrey et al. (2004); Hill, Weiss, Zhai (2011)



Using Supervised ML
to Estimate ATE

Under
Unconfoundedness

Method II:

Regression
adjustment

> Belloni, Chernozukov, Hansen (2014):
> LASSO of W~X; Y~X
> Regress Y~W, union selected X

o Sacrifice predictive power (for Y) for
causal effect of Won Y

> Contrast w/ off-the-shelf supervised

learning

o Off-the-shelf LASSO Y~X,W does not select all X’s that are
confounders

o Omitting confounders leads to biased estimates

° Prioritize getting the answer right about treatment
effects



Using Supervised ML
to Estimate ATE

Under
Unconfoundedness

Method lII:

Estimate CATE
and take averages

> Hill (2011) uses BART (Chipman, 2008) or other
flexible method to estimate
uC;w) = E[Y|X; = x, W; = w]
o Estimate ATE as E[ji(X;; 1) — f(X;; 0)]
o See further papers by Hill and coauthors

> Performs well in contests, can use propensity
adjustments in estimating conditional mean
function

> Performance relies on doing a good job
estimating this outcome model—depends on
DGP, signal-to-noise



Using Supervised ML
to Estimate ATE
Under

Unconfoundedness

Method IV:

Double
robust/double
machine learning

o Cross-fitted augmented inverse propensity scores

° These are the efficient scores (see literature on semi-parametric
efficiency)

° Orthogonal moments
> Cross-fitted nuisance parameters: T_;(X;), é_;(X;), fi_;(X;; W), e.g.
OOB random forest

o Score given by
oA ' Wi—é_i(X;)
[ = 1_;(X;) + (1-é_i(X;))eée—i(X;)

o ATE is average of I

Yi—i_;(X;; Wp))

> DR: consistent estimates if either propensity score OR
outcome correct

> Can get \/n convergence even if nuisance parameters
converge more slowly, at rate n/#, which helps in high
dimensions



Using Supervised ML
to Estimate ATE
Under

Unconfoundedness

Method V:

Residual
Balancing

> Athey, Imbens and Wager (JRSS-B, 2018)

> Avoids assuming a sparse model of WX,
thus allowing applications with complex
assignment

> Not just slow convergence of assignment model—
assignment model does not need to be estimated at all!

> LASSO Y~X

> Solve a programming problem to find
weights that minimize difference in X
between groups

> Maintains the orthogonal moment form



Consider the general class of estimators 7 = M) — (0,

AL =X 504 % A1) (y,. _X,..g(l)),

Residual Proposition. (Athey, Imbens, Wager; 2016) Suppose that

Y, = X B(W") + ¢j. Writing errll) = m1) — X . B(l), we have

Balancing

| < xo] o -0], 4| 32 0]
- Y wey

Here X(1) is a subset of X corresponding to the treated cases.




Residual

Balancing

Motivated by this proposition, we estimate 7 as follows.

1. Estimate 3(1) using a lasso or elastic net (Hastie et al., 2015)
on the treated cases.

2. Estimate weights ~+(}) by quadratic programming:

7(1) = argmin; ) {C

0+ 0o fx-xe )

o0

(1) _

subject to constraints fyfl) >0and ) v 1, where

¢ € (0, 1) is a tuning parameter; see also Zubizarreta (2015).

3. Finally, our treatment effect estimate is 7 = m(1) — m(0),
A =X 50 4 % 3 (y,. _Xi.g(l)),
{i:W;=1}
and M0 is estimated analogously.

Software for R is available in the package balanceHD.



Residual

Balancing

Theorem. (Athey, Imbens, Wager; 2016) Suppose that the
following two conditions hold, along with standard assumptions
(including the restricted eigenvalue condition):

Overlap: 77<P[W=1|X=X} <1—mn, and
Sparsity: Hﬁ(o/l)HO < +/n / log(p).

Then approximate residual balancing is semiparametrically efficient:

(= 7) /@2 + [¢O| = N (0. 0?),

e (10 L) <= g+ =i

This formula also yields asymptotic confidence intervals for 7.



Instrumental Variables




What if unconfoundedness fails?

Alternate assumption: there exists an instrumental variable Z; that is
correlated with W, (“relevance”) and where:

(Y:(0),Y;(1)) L Z;|X;

Treatment W, Instrument Z

Military service Draft Lottery Number Earnings

Price Fuel cost Sales

Having 3 or more kids  First 2 kids same sex Mom’s wages

Education Quarter of birth Wage

Taking a drug Assigned to treatment group Health

Seeing an ad Assigned to group of users Purchases at advertiser’s

advertiser bids on in experiment  web site




Instrumental Variables:
Binary Experiment Case

Assigned to Not Assigned to
Treatment Treatment

Compliers Treated Not treated
Always-Takers Treated Treated
Never-Takers Not treated Not treated
Not treated Treated




Esti

fferent

mands

Why not look at who was actually treated?

Those who complied or defied were probably not
random

Intention-to-treat (ITT)

Compare average outcomes of those assigned to
treatment with those assigned to control

This may be interesting object if compliance will be
similar when you actually implement the treatment,
e.g. recommend patients for a drug

Local Average Treatment Effect (effect of treatment on
compliers)

Calculated as ITT/Pr(treat|assigned
treatment)=ITT/Pr(W=1|Z=1)

This clearly works if you can’t get the treatment without
being assigned to treatment group (no always-takers, no
defiers)

This also works as long as there are no defiers
LATE is always larger than ITT



Local Average
Treatment
Fffects

Special case: W,Z both binary
Relevance: Z; is correlated with W,
Exclusion: (Y;(0),Y;(1)) 1 Z;
Monotonicity: No defiers

Then the LATE is:

E[Y;|z; = 1] — E[Y;|Z; = 0]
E[W;|Z; = 1] — E[W;|Z; = 0]




Local Average
Treatment
Effects:
Including
Covariates

Special case: W,Z; both binary
Relevance: Z; is correlated with W,
Exclusion: (Y;(0),Y;(1)) 1 Z;|X;
Monotonicity: No defiers

Then the LATE conditional on X; =x is:

E[Yllxl — X,Zi — 1] - E[Yllxl — eri — 1]
IE[Wlle — X,Zl' — 1] — IE[Wlle — X,Zl' — 1]




|V
Approaches:
Including
Covariates

Two-stage least squares approach
Y; = Bo + B1W; + B2X; + &
Wi =vo +v1Z; + 12X + &

Chernozhukov et al:

> Use LASSO to select which X’s to include and partial
them out

° |f there are many instruments, use LASSO to construct
the optimal instrument, which is the predicted value of
W.

I

> Formally, estimate first stage using Post-LASSO

° In second stage, run 2SLS using predicted value of
treatment as instrument

> Theorem: if model is sparse and instruments are
strong, estimator is semi-parametrically efficient

Note: doesn’t consider observable or unobservable
heterogeneity of treatment effects

See also Peysakhovich & Eckles (2018)



IV
Approaches:
Including
Covariates

Two-stage least squares approach
Y; = Bo + B1W; +,BéXi + &
Wi =vo +1v1Z;i +v2X t+ &

Chernozhukov et al example:
Angrist and Krueger quarter of birth paper

Instruments: quarter of birth, and interactions with
controls

Using few instruments gives large standard errors

Estimator Instruments Schooling Coef Rob Std Error
25LS (3 IVs) 3 10 020
25LS (All IVs) 1530 10 042

2515 (LASSD 1Vs) 12 10 014




Clicks as a Fraction of Top Position 1

Search phrase:
Model.:

Top Position 2

Top Position 3

Side Position 1

Clicks
iphone
OLS A\
0.66 0.67
0.40 0.55
0.04 0.39

viagra
OLS 1V
0.28 0.66
0.14 0.15
0.04 0.13

User Model of Clicks:
Results from Historical

Experiments
(Athey, 2010)

OLS Regression:
o Features: advertiser effects and
position effects
IV Regression

° Project position indicators on A/B
testid’s.

> Regress clicks on predicted position
indicators.

Estimates show smaller position impact
than OLS, as expected.

Position discounts important for
disentangling advertiser quality scores



IV:
Heterogeneous

Treatment
Effects

What if we want to learn about conditional

average treatment effects (conditional on
features?)

For simplicity, assume treatment effects are
constant conditional on X.

lllustrate with two approaches:

> Generalized random forests (Athey, Tibshirani,
and Wager, Annals of Statistics, 2018)

o Asymptotic normality and confidence intervales

> Deep Instrumental Variables (Taddy, Lewis,
Hartford, Leyton-Brown (UBC))

Then apply to optimal policy estimation

> Athey and Wager (2016), Zhou, Athey and
Wager (2018)



Instrumental Variables (1V) X Y

Z D < e

The exclusion structure implies
Elylx.2] = | 9o DR plx, 2)

You can observe and estimate E[y|x, z] and F(p|x, z)

= to solve for structural g(p, x) we have an inverse problem.

cf Newey+Powell 2003



2
min Z (yl — fg(P»xi)dF(P‘xi;Zi) )

gea

2SLS: p = Bz + v and g(p) = tp sothat [ g(p)dF (p|z) = tE[p|z]
So you first regress p on z then regress y on p to recover 7.



2
min ), (yl — fg(P»xi)dF(P‘xi»Zi) )

gea

Or nonparametric sieves where g(p, x;) = X, Vx@x (p, x;) and

Erlor(p, x;)] = XjariBj(x;, z;) (Newey+Powell)

or

Er[yi — 2k Vi@ x) ] = 2 a;iBj(x;, 2;) (BCK, Chen+Pouzo)

But this requires careful crafting and will not scale with dim(x)



2
min Y, (yi — fg(l?; xi)dF (plx;, z;) )

gea

Instead, Deep |V targets the integral loss function directly
For discrete (or discretized) treatment

* Fit distributions F(p|x;, z;) with probability masses f(py|x;, z;)
. A . . . A C 2
* Train g to minimize [yi — Y g(pb,xi)f(pblxi,Zi)]

And you’ve turned IV into two generic machine learning tasks



relative click rate
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Search Ads Application of Deep IV: Relative Click Rate
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Heterogeneity across advertiser and search



Generalized
Random Forests:
Tailored Forests as
Weighting

Functions

v

Local GMM /ML uses kernel weighting to estimate
personalized model for each individual, weighting nearby
observations more.

» Problem: curse of dimensionality

We propose forest methods to determine what dimensions
matter for “nearby’ metric, reducing curse of dimensionality.

» Estimate model for each point using “forest-based” weights:
the fraction of trees in which an observation appears in the
same leaf as the target

We derive splitting rules optimized for objective

Computational trick:

» Use approximation to gradient to construct pseudo-outcomes
» Then apply a splitting rule inspired by regression trees to these
pseudo-outcomes



Our parameter of interest, #(x), is characterized by
E [’I;""/‘g(x)’y(x)(o,‘) { X; = X} =0 forall xe X,

where v(x) is an optional nuisance parameter.

» Quantile regression, where (x) = F_!(q) for g € (0. 1):

o (Y1) = 1({Yi > 6(x)}) — (1 — q) 1({Y; < 6(x)})

» |V regression, with treatment assignment W and instrument
Z. We care about the treatment effect 7(x):

o (ZYi= Wir(x) = ()
Pr(x), p(x) Yf . W' ’T(X) - ;L(X) :



The classical approach is to rely on local solutions (Fan and
Gijbels, 1996; Hastie and Tibshirani, 1990; Loader, 1999).

n

206 Xi) Yy, () (01) = 0,

i—1
where the weights a(x; X;) are obtained from, e.g., a kernel.

We use random forests to get good data-adaptive weights. Has
potential to be help mitigate the curse of dimensionality.

» Building many trees with small leaves, then solving the
estimating equation in each leaf, and finally averaging the
results is a bad idea. Quantile and |V regression are badly
biased in very small samples.

» Using RF as an “adaptive kernel” protects against this effect.



Forests induce a kernel via averaging tree-based neighborhoods.



Generalized Random Forests

* Athey, Tibshirani & Wager establish asymptotic normality of
parameter estimates, confidence intervals

* Recommend orthogonalization
e Software: GRF (on CRAN)



_ocal Linear Forests
-riedberg, Athey, Tibshirani, and Wager (2018)

Many economic datasets have smooth relationships
Many relationships are monotonic or U-shaped
Forests fit a line as a step function; very inefficient

A variety of ML methods might improve but little theory

v vy vy Vvy

Solution: Local Linear Forests + theory



Comparing Regression Forests to Local Linear
Forest: Adjusting for Large Leaves/Step Functions

05 ] |I-" '.:I; -.I' |I'..
X x
Figure 1: Predictions from random forests (left) and locally linear forests (right) on 600 test points. Training
and test data were simulated from equation (1), with dimension d = 20 and errors € ~ N(0,20). Forests

were trained also on n = 600 training points and tuned via cross-validation. Here the true conditional mean
signal p(x) is in black, and predictions are shown in red.
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How does treatment effect (CATE) change with political leanings, income?
LLF has better MSE of treatment effect



Optimal Policy
Fstimation




Estimating Treatment Assignment
Policies

Scenario: Analyst has Observational Data Large Literature Spanning Multiple

> Historical Logged Data Disciplines
o Tech firm using contextual bandit or black box  ° Offline policy evaluation (e.g. Dudik et al,
algorithms 2011, others...) versus efficient estimation of

best policy from a set

(¢]

Logged data from electronic medical records
o Two actions vs. multiple actions vs. shifting

continuous treatment

(¢]

Historical data on worker training programs

and outcomes
> Designs

(¢]

Randomized Experiment with Noncompliance
o Randomized experiments

Goal: Estimate Treatment Assignment > Unconfoundedness with known (logged)
p0|icy propensity scores
o Minimize regret (v. oracle assignment) > Unknown propensity scores

o Instrumental Variables



Each observed (iid) sample i, with i = 1, ..., n, has:

» Features X; € X;

» Potential utilities {Y;(0). Y;(1)} € R?: and a

» Realized treatment W; € {0, 1}, such that Y; = Y;(W,).

» (Instrument Z; € {0, 1} that may be used for identification.)

The conditional average treatment effect 7(-) is
7(x) = E [Yi(1) - Yi(0) | X; = ]
The utilitarian value of a policy 7 : X — {0, 1},
V() = E[Yi(7(Xi)] = E[Yi(0)] + E [7(X)7(X)].

measures the expectation of Y if we assign treatment with 7.



There is an earlier literature that considers policy learning in cases
where we have a finite-dimensional model for E [Y' | X, W].

» Manski (2004) considers discrete x, and studies asymptotics
of conditional empirical success rules.

» Hirano and Porter (2009) has general asymptotic results
that apply when we can estimate 7(x) at a 1/4/n rate.

» Stoye (2009) derives exact minimax rules for discrete x.

Kitagawa and Tetenov (2018) extend this line of work by pairing
structured policy classes with unstructured models for nature.

» See also counterparts in computer science and statistics
(e.g., Swaminathan and Joachims, 2015; Zhao et al., 2014).

More broadly, the idea of optimizing an empirical utility estimate
has also been advocated in operations research (Ban and Rudin,
2018; Bertsimas and Kallus, 2014).



Kitagawa & Tetenov (2018) propose learning policies by
maximizing an empirical estimate of value obtained via IPW

o

ﬁ:argmax{V(ﬁ):ﬂE I_I}.

V(= Ly M =Ty,

where e(x) =P [W ‘ X = x| is the propensity score. Given
unconfoundedness (Rosenbaum & Rubin, 1983),

{Yi(0). Yi(1)} L W;| X..

they show that if e(x) is known and if 'l has a finite VC-dimension,

R0 =00 (2 )




mell

main (27T(Xl) — 1)fl
=1

Alternative Different authors have proposed using different scores in the

Approaches to Policy optimization problem
Evaluation/Estimation

Design:
Unconfoundedness & _ 1{wi=n(X;

Literature focuses on
this case

Cross-fit AIPW: [} = 2_;(X;) + —~= 722 - (% —A-(Xi, W)




» Athey and Wager (2016): Uses semi-parametric efficiency
theory + complexity theory to derive efficient estimation
approach for optimal personalized policies

» Unconfoundedness; instrumental variables; continuous
treatment with personalized small increase/decrease in
treatment v. status quo policy

» Policies lie in a restricted class, accomodating constraints such
as budgets

» Challenge in proof: show that results about comparing two
policies extend to the case of comparing a continuum of
policies within a class of limited complexity

» Tighter bounds than prior literature using algorithm based on
CATE estimation and efficient scores (semi-parametric
efficiency literature)

» First \/n convergence results with unknown propensity scores

» Zhou, Athey and Wager (2018): Extends to multi-arm case;
implement with global tree search



Multi-Arm Generalization
(Zhou, Athey and Wager, 2018)

Step 1
Partition the data into K folds.
For each fold k: estimate é;;‘:( -) and ,&.;"‘(-) for every j = 1,2, ..

Step 2

) | . L Vi Xy)
QAIPW(W) = %ZLI <7T(Xi)ari>: where I'; = - k‘?;j(x.) A+
Aj ‘

Step 3
Take Toarpw = arg max en QAIPW(W)

. d.




Instrumental Variables
Application

Build on Chernozhukov et al
(2018) — “CEINR”

Framework for estimating
treatment effects with
orthogonal moments

Example: Voter mobilization
Treatment: Calling voter
Randomized Experiment:
Voter list (not all have #s)
Outcome: Did citizen vote
Question: Policy for which
people should be called

As in CEINR, suppose 7(x) can be represented via weighting:
E [7m(X) — g(X. Z)m(X, W) | X = x] =0 for all x, m(-).

CEINR then show that the doubly robust estimator is efficient

T = —Zﬁs F:‘ :'r,ﬁ(X,-)JrQ(X,-, Zf)(yf_":h(xf‘- W’))

Example: Endogenous treatment with instrument and conditional
homogeneity, 7(x) = Cov [Y, Z| X =x] /Cov [W. Z| X =x].
Now use the compliance score (Aronow and Carnegie, 2013),

1 Z; —Z(X;)
A(X,:)Z(X,‘)(]. —Z(X;)"
A(X):P[W}Z:LX:}(} —IP’[W}Z:O,X:X},

g(X;, Z,): Z(X):P[Z;}X;:X},

to construct a doubly robust estimator.



General Approach: Choose Policy to Assign
Treatment to Units with High Scores

max Zn (Zﬂ(Xl) — 1)fl
=1

mell

Key insights:

» Scores should be orthogonalized/doubly robust

» Use cross-fitting/out-of-bag for nuisance
parameters

e Can solve as weighted classification problem (e.g.
Beygelzimer et al; Zhou, Athey & Wager propose
tree search algorithm)



Contextual Bandits




Contextual

Bandits

See John Langford, Alekh Agarwal, and coauthors for surveys, tutorials,
etc...

Online learning of treatment assignment policies

Issues with contexts:
o No context, small finite set of contexts: bandit for each context

o With many contexts, we need to solve a hard estimation problem (as
we’ve been discussing)

o Best performance: state of the art causal inference methods

Most contextual bandit theory

o Assumes outcome model correct (no need for double robust, double
robust can add variance)

Proposal in Dimakopoulou, Zhou, Athey and Imbens, AAAI 2019

> Use double robust estimation, shows regret bounds match existing
literature

Many open questions from causal inference perspective

o Establish improvement from double robust methods with
misspecification



Contextual bandits

Arm space A with |4| = K arms.
Context space X with dimensionality d.

Environment generates context and rewards (x,, 7,) ~ D, r,= (r(1), ..., r(K))
o Agent selects action a, and observes reward only for the chosen arm, r(a,)

Goal: assign each context x to the arm with the maximum expected reward
o wu,(x)=E[r(a)]|x,=x]=f(x;6)1s afunction of x, parameters 0, are unknown...

Balance exploration (information gained for arms we are uncertain about) with
exploitation (improvement in regret from assigning context to the arm viewed best).



Examples

e Content recommendation in web services
o arms: recommendations
o context: user profile and history of interactions
o reward: user engagement and user lifetime value

¢ Online education platforms
o arm: teaching method
o context: characteristics of a student
o reward: student’s scores

e Survey experiments
o arm: what information or persuasion to use
o context: respondent’s demographics, beliefs, characteristics
o reward: response



[Linear contextual bandits

Build parametric model for expected reward of each arm given covariates
o linear bandit: E[r(a) | x,=x]=6,"x forall a

LinUCB and LinTS have near-optimal regret bounds (requires correct specification).

LinUCB
o use ridge regression to get an estimate of 8, and a confidence bound of 6 7 x
o assign context x to arm with highest confidence bound

LinTS
o start with a Gaussian prior on parameter 0,

o use Bayesian ridge regression to obtain the posterior of 6,
o sample parameters for each arm and assign x to arm with highest sampled reward



Estimation 1s challenging

e Inherent bias to the estimation due to the adaptive assignment of contexts to armes.
o context assigned to arm with highest reward sample or confidence bound
o creates systematically unbalanced data
o complete randomization gives unbiased estimates, but this defeats the purpose

A A
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Estimation 1s challenging

e Inherent bias to the estimation due to the adaptive assignment of contexts to arms.
o context assigned to arm with highest reward sample or confidence bound
o creates systematically unbalanced data
o complete randomization gives unbiased estimates, but this defeats the purpose

e Aggravating sources of bias in practice
o model misspecification
m true generative model and functional form used by the learner differ
o covariate shift
m carly adopters of an online course have different features than late adopters



Balanced contextual bandits

Dimakopoulou, Zhou, Athey, Imbens (AAAI, 2019)
Propensity score p(a,) the probability that context x, 1s assigned to arm a,

Balanced LinTS (BLTS) and balanced LinUCB (BLUCB)
o Weight each observation (x, a,, r,) by 1/p(a,)
o Use the weighted observations in ridge regression.

For Thompson sampling, propensity is known.

o  Note: Formal Bayesian justification for weighting in Thompson sampling is not clear, similar to justification for
using the propensity score in observational studies.

For UCB, propensity 1s estimated (e.g. via logistic regression).

o Note: The notion of “propensity” in UCB at a given time is contrived (either 0 or 1). Treating the arrival of a context
as random, we use the context’s ex ante propensity.



Why balancing helps?
e In practice, balancing can help with covariate shift and model mis-specification.

e Doubly-robust nature of of inverse propensity score weighted regression
o accurate value estimates either with a well-specified model of rewards or with a
well-specified model of arm assignment policy.

e Contextual bandits:
o generally, do not have a well-specified model of rewards
o even 1f they do, 1t cannot be estimated well with small datasets in the beginning
o but, they control arm assignment policy conditional on observed context
o hence, access to accurate propensities results in more accurate value estimates



Algorithm 1 Balanced Linear Thompson Sampling

l:

2:
3:
4:

5
6:
7:
8
9:
10:
11:
12:

13:
14:

15:
16:
17:
18:
19:
20:
21:
22:

Input: Regularization parameter A > (, propensity
score threshold v € (0, 1), constant «v (deafult is 1)
Setd, «+ null, B, « null,Va € A
Set X, < empty matrix, r, < empty vector Va € A
fort=1.2,...., T do

if 3a € As.t. §, = null or B, = null then

Select a ~ Uniform(.A)
else

Draw 0, from N/ (@,,. an(QAu)) foralla € A
Select a = arg max ;rtT{;’a

acA
end if
Observe reward r;(a).
Set W, < empty matrix
forr=1...., t do
Compute p, () and set w =
W, + diag(W,, w)
end for
X, [X,: I:—]
B, «+ XJW,X, + )
ra < [1a 1 7(a)]
0o — B'XW,r,
V(0a) By ' (ra = X 0a) T Wa(ra — X[ 6,)
end for

-1
max(7.pa (zr))

€

Regret(T; BLTS) = O ( KT )

Algorithm 2 Balanced Linear UCB

l:

9:
10:
11:
12:
13:

14:
15:
16:
17:
18:

19:

20:
21:

P NN H LN

Input: Regularization parameter A > 0, propensity
score threshold v € (0, 1), constant cv.
Setd, < null. B, « null.Ya € A
Set X, < empty matrix, r, < empty vector Va € A
fort =1.2,....Tdo

if 3 € A s.t. 6, = null or B, = null then

Select a ~ Uniform(.A)
else

Selecta = arg 111331[{ (r;ré(, + « J'IV(HA(_L)It)

ac
end if
Observe reward r;(a).
Set W, <— empty matrix
forr=1.....tdo
Estimate p, (x,) and set w =
W, + diag(W,,w)
end for
Xﬂ. «— [Xa : I;r]
By« XJW, X, + M\
T < [rgq 1 1i(a)]
fo <~ B7' X W,r,
V(0a) < By (ra — X 0,) T Wo((ra — X1 0,)
end for

1
max(vy,pa(x+))

Regret(T; BLUCB) = O (vVTdK)

State of the art regret guarantees, but better performance in practice.



A simple synthetic example

Expected reward of the arms
conditional on the context x = (x,, x;) ~ N(0, 1)

05
Initial contexts come from a subset of the

covariate space around the global optima.

{ 100 _l IlO t I20

7 »

Well-specified reward model
(include both linear and quadratic terms in context)

=100 . ¢t llﬂ t 7 t 1'5(] t I4(l t=150 { ]{s[l { { IM) ik IJEP
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o =0 L, t=10 =

2 . 1=30 t=40_ 1
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(b) Well-specified LinUCB
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(c) Wel]—speciﬁed BLTS
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(d) Well-specified BLUCB

Mis-specified reward model
(include only linear terms in context)

o t=0 t=10 L 1=20 t=30 . t=40 1o =50 .1 =90

£iﬁkunmumu

L 1=100 _— Lo, =120 _1 130 _1 140, t=150 _| lso_ ,=llo (=180, 1=1%0

(a) Mis-specified LinTS
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(b) Mis-specified LinUCB

=30

L t=40 (=50 1=60 =70

. 1=80

(c) Mis-specified BLTS
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(d) Mis-specified BLUCB



A classification dataset can be turned into a

Experiments on 300 classification datasets

contextual bandit

labels — arms,
features — context,
accuracy — reward

O

O

O

O

300 datasets from Open Media Library

reveal only accuracy of chosen label

Observations Datasets
< 100 58
> 100 and < 1000 152

> 1000 and < 10000 57

> 10000 33
Classes Count Features Count
2 243 < 10 154
> 2 and 10 48 > 10 and < 100 106
> 10 9 > 100 40

LinTS

LinTS

| 10

0.04

1.01




Structural Models




Themes for ML + Structural Models

FROM STRUCTURAL LITERATURE FROM ML LITERATURE

Attention to identification, estimation using “good” exogenous  More efficient com putational tools

variation in data o E.g. stochastic gradient descent
o Supermarket apﬁlication: Tues-Wed comparisons when prices -8 &
g

change Tues night; attention to holiday purchases or high o E.g.va riational inference
seasonality items

Adding sensible structure improves performance _ . . _ _
> Required for never-seen counterfactuals Dimension reduction for longitudinal data

> Increased efficiency for sparse data (e.g. longitudinal data) o E,g, matrix factorization

Nature of structure
> Learning underlying preferences that generalize to new situations
° Incorporating nature of choice problem

> Many domains have established setups that perform well in data-
poor environments

Formal model tuning on validation set
o But with different objectives, e.g. counterfactual

Tune models for counterfactual performance
> Focus on parameters of interest, not fit

o Get a different answer depending on CF of interest



Discrete Choice Models

User u, product i, time t If sufficient exogenous variation in prices, can
identify & estimate distribution of a,,.

Hyicr = Vi + IBXi — QuDit With longitudinal data and sufficient price variation,
o can estimate «a,, for each user. (Often Bayesian.)
Uuit = Uyit TEuit

Revealed preference (users’ choices) allow us to

If €,;¢ i.i.d. Type | extreme value, understand welfare.
then > Can solve for a firm’s optimal price, optimal coupon
o Understand the impact on firm profits (given cost
Pr(Yuit _ l) _ exp(Uyit) information) and consumer welfare.
2:J' eXp(“ujt) Can evaluate the impact of a new product
introduction or the removal of a product from choice
set.

Dan McFadden (early 1970s): Counterfactual
estimates of extending BART in San Francisco area.



Combining Discrete Choice Models with
Modern Machine Learning....

Ruiz, Athey, and Blei (2017), Athey, Blei, Donnelly, and Ruiz (2018), Athey, Blei, Donnelly,
Ruiz and Schmidt (2018)

Bring in matrix factorization, and apply to shopping for many items (baskets,
restaurants)

Incorporate choice to not purchase

Two approaches to product interactions
o Use information about product categories, assume products substitutes within categories

> Do not use available information about categories, estimate subs/complements

Can analyze counterfactuals
> Personalized coupons
o Restaurants opening and closing



The Nested
Logit

Factorization
Model

v

vy

Choices in one category are independent of other categories

User u has K-vector of preferences 6, and a vector of price
sensitivity parameters v,

ltem / has two K-vector of attributes «; and j;.

Mean utility for item
Huit = QIﬁf - '}’I&’fpit (1)

Utility is Uyjr = ptuir + €uir Where €, drawn from extreme
value and indep. cond. on purchasing an item within a
category, implying

Pr(Y,t = i|purchase in cat for ut) = > =P Huit (2)
j>0 EXP Hujt

She chooses the highest utility item in each category or the
outside option; the outside option Is in its own nest



» Users u independently chooses whether or not to make a
purchase from each product category c.

» Mean utility for not choosing category

ucgt — QT C 3
The Nested Hueot = Be,uPoo 3
Factorization > i € _
Model Utility for choosing category
chlt — QT 18::1 au5C1!VC + Cucyt (4

» Where [V, is the inclusive value of the items in the category i
given by IV, = log Z:’EJ,_- exp jtuit, Which is the expectation of
the max of the U, prior to learning the €, for each item.




* Counterfactual inference in nested logit
models uses structure

* Model specifies how user substitutes if choice

set changes, e.g. product out of stock
* Conditional on purchasing a single item in a

The Nested category, choice probabilities redistributed in
Logit proportion to probabilities of other items

Factorization * Model makes counterfactual predictions
Model about what happens when prices change

* Given price sensitivity for a given product, model
makes sensible predictions about how purchase
probabilities for other products change when the
price of the given product changes




» MCMC-based Bayesian methods: Common in marketing for
estimating models with heterogeneity, but computationally
infeasible as data size and number of parameters grows

» This choice of functional form allows for fast and efficient
estimation using variational Bayesian inference

» Variational Bayes:

» Choose parameterized family of distributions q(:|n) to
Computational approximate the posterior
Approach » Find n that minimizes KL-divergence to the true posterior
» With appropriate choice of priors and g, this optimization can
be done using simple coordinate ascent
» Accuracy similar to MCMC, but 1000s of times more quickly

» Introducing price effects and time-varying price slows things
down substantially (hours rather than minutes; but still

feasible unlike MCMC)

» Introducing substitutability within categories requires
additional computational tricks




Table: Mean Log Likelihood for Cross Price Weeks

Model

Popular UPCs

Less Common UPCs

Aggregate

Individual

Agpregate

Individual

Nested Factorization

MNested Logit with HPF Controls

Multinomial Logit with HPF Controls
Hierarchical Poisson Factorization (HPF)
Multinomial Logit with Demographic Controls

Nested Logit with Demographic Centrols

Mixed Logit with Random Price and Random Intercepts
Mixed Logit with Random Price Effects and HPF Controls
Mixed Logit with Random Price Effects and Demographics

-2.4527 (0.0262)
-2.4844 (0.0277)
-2.4836 (0.0276)
-2.4919 (0.0294)
-2.4966 (0.0279)

-2.5066 (0.0292)
-2.5167 (0.0242)
-2.4850 (0.0253)
-2.5312 (0.0267)

-0.0925 (0.0008)
-0.1041 (0.0009)
-0.1041 (0.0009)
-0.1008 (0.0009)
-0.1162 (0.0010)

-0.1161 (0.0010)
-0.1166 (0.0009)
-0.1011 (0.0009)
-0.1136 (0.0009)

-1.2017 (0.0084)
-1.2177 (0.0076)
-1.2165 (0.0076)
-1.2343 (0.0078)
-1.2182 (0.0077)

-1.2194 (0.0078)
-1.3176 (0.0064)
-1.3168 (0.0066)
-1.3989 (0.0069)

-0.0149 (0.0001)
-0.0164 (0.0001)
-0.0164 (0.0001)
-0.0166 (0.0001)
-0.0170 (0.0001)

-0.0170 (0.0001)
-0.0182 (0.0001)
-0.0190 (0.0001)
-0.0235 (0.0001)

Goodness of Fit (Tuned for CF)

Weeks where another product in category changed prices




Average Changes in Demand in Test Set

> 0.25 Increase -
0.10 - 0.25 Increase -

0.01 = 0.10 Increase -

o Elasticity Tercile
=

g —— Least Elastic
O No Change -

= — Middle

=

o — Most Elastic

0.01 = 0.10 Decrease -
0.10 - 0.25 Decrease -

> 0.25 Decrease -

) 1 L]
-06 -04 -02 00 02 04 06 08
Demand Change

Validation of Structural Parameter Estimates

Compare Tuesday-Wednesday change in price to Tuesday-Wednesday change in demand, in test set

Break out results by how price-sensitive (elastic) we have estimated consumers to be




Profit Gains from Personalized Pricing Relative to Uniform Coupon Distribution
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Beha'vioral Demographic Individi:a!ized
Coupon Distribution Strategy

Personalized Pricing
Matrix Factorization Approach Allows Accurate Personalization

Mixed Logit with Random Price and Random Intercepts
Mixed Logit with Random Price Effects and Demographics
Mixed Logit with Random Price Effects and HPF Controls
Multinomial Logit with Demographic Controls

Multinomial Logit with HPF Controls

Nested Factorization

Nested Logit with Demographic Controls

Nested Logit with HPF Controls

HPF Controls
No HPF Controls

How much profit can be made by giving a 30% off coupon for a single product to a targeted
selection of 30% of the shoppers in the store? Compare uniform randomization, demographic, or

individual targeting policies based on structural estimates




Conclusions

Causal inference is key to using machine learning and artificial intelligence to make decisions
o This is a tautological statement: but at the same time, not fully appreciated

Artificial intelligence agents will improve if they are good statisticians
Al based on causal modeling has desirable properties (stability, fairness, robustness, transferability, ....)

There is an enormous literature on theory and applications of causal inference in many settings and with many
approaches

The conceptual framework is well worked out for both static and dynamic settings
Structural models enable counterfactuals for never-seen worlds
Machine learning algorithms can greatly improve practical performance, scalability

Challenges: data sufficiency, finding sufficient/useful variation in historical data
> Recent advances in computational methods in ML don’t help with this

o But tech firms conducting lots of experiments, running bandits, and interacting with humans at large scale can greatly expand
ability to learn about causal effects!
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